Right triangle and parallelogram pairs with a common area and a common perimeter $\hat{\star}$

Yong Zhang ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ College of Mathematics and Computing Science, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
${ }^{\text {b }}$ Department of Mathematics, Zhejiang University, Hangzhou 310027, People's Republic of China

A R T I C L E I N F O

Article history:

Received 6 October 2015
Received in revised form 2 December 2015
Accepted 30 January 2016
Available online 4 February 2016
Communicated by David Goss

MSC:

primary 11D25, 11D72
secondary 11 G 05
Keywords:
Right triangle
Parallelogram
Common area
Common perimeter
Elliptic curve

A B S T R A C T

By the theory of elliptic curves, we show that there are infinitely many integer right triangle and integer parallelogram pairs with a common area and a common perimeter.
© 2016 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

In 1995, R.K. Guy [2] introduced a problem of Bill Sands, that asked for examples of an integer right triangle and an integer rectangle with a common area and a common perimeter, but there are no non-degenerate right triangle and rectangle pair. In the same paper he showed that there are infinitely many such isosceles triangle and rectangle pairs. In 2006, A. Bremner and R.K. Guy [1] proved that there are infinitely many such Heron triangle and rectangle pairs.

Now we consider another generalized problem to find integer right triangle and integer parallelogram pairs with a common area and a common perimeter. Suppose that such a right triangle has sides

$$
(x, y, z)=\left(m^{2}-n^{2}, 2 m n, m^{2}+n^{2}\right)
$$

where $m>n$. The corresponding parallelogram has sides p, q and the intersection angle of them θ, where $0<\theta \leq \pi / 2$. Noting the homogeneity of these sides, let m, n, p and q be positive rational numbers, then we have the Diophantine system

$$
\left\{\begin{array}{l}
m n\left(m^{2}-n^{2}\right)=p q \sin \theta \tag{1.1}\\
m^{2}+m n=p+q
\end{array}\right.
$$

From Eq. (1.1), $\sin \theta$ is a rational number. Let us consider

$$
\sin \theta=\frac{2 t}{t^{2}+1}
$$

where t is a positive rational number. According to the relationship

$$
f(t)=f(1 / t)=\frac{2 t}{t^{2}+1}
$$

we set $0<t \leq 1$.
For $t=1, \theta=\pi / 2$, this is the case studied by R.K. Guy [2]. By the theory of elliptic curves, we prove

Theorem 1.1. If the elliptic curve

$$
Y^{2}=X^{3}+t^{2} X^{2}-4 t^{2}\left(t^{2}+1\right)\left(t^{2}-t+1\right) X+4 t^{4}\left(t^{2}+1\right)^{2}
$$

has a rational point $P=(X, Y)$ satisfying the condition

$$
\begin{equation*}
0<X<2 t\left(t^{2}+1\right), \quad 0<Y<t X+2 t^{4}+2 t^{2} \tag{1.2}
\end{equation*}
$$

for some t, then there exist infinitely many integer right triangle and integer parallelogram pairs with a common area and a common perimeter for this t.

https://daneshyari.com/en/article/4593375

Download Persian Version:
https://daneshyari.com/article/4593375

Daneshyari.com

[^0]: * This research was supported by the National Natural Science Foundation of China (Grant No. 11501052).
 * Correspondence to: College of Mathematics and Computing Science, Changsha University of Science and Technology, Changsha 410114, People's Republic of China.

 E-mail address: zhangyongzju@163.com.

