

Contents lists available at ScienceDirect

Journal of Number Theory

Right triangle and parallelogram pairs with a common area and a common perimeter $^{\frac{1}{12}}$

Yong Zhang a,b,*

^a College of Mathematics and Computing Science, Changsha University of Science and Technology, Changsha 410114, People's Republic of China
 ^b Department of Mathematics, Zhejiang University, Hangzhou 310027, People's Republic of China

ARTICLE INFO

Article history:
Received 6 October 2015
Received in revised form 2 December 2015
Accepted 30 January 2016
Available online 4 February 2016
Communicated by David Goss

MSC: primary 11D25, 11D72 secondary 11G05

Keywords: Right triangle Parallelogram Common area Common perimeter Elliptic curve

ABSTRACT

By the theory of elliptic curves, we show that there are infinitely many integer right triangle and integer parallelogram pairs with a common area and a common perimeter.

© 2016 Elsevier Inc. All rights reserved.

E-mail address: zhangyongzju@163.com.

 $^{^{2}}$ This research was supported by the National Natural Science Foundation of China (Grant No. 11501052).

 $^{^*}$ Correspondence to: College of Mathematics and Computing Science, Changsha University of Science and Technology, Changsha 410114, People's Republic of China.

1. Introduction

In 1995, R.K. Guy [2] introduced a problem of Bill Sands, that asked for examples of an integer right triangle and an integer rectangle with a common area and a common perimeter, but there are no non-degenerate right triangle and rectangle pair. In the same paper he showed that there are infinitely many such isosceles triangle and rectangle pairs. In 2006, A. Bremner and R.K. Guy [1] proved that there are infinitely many such Heron triangle and rectangle pairs.

Now we consider another generalized problem to find integer right triangle and integer parallelogram pairs with a common area and a common perimeter. Suppose that such a right triangle has sides

$$(x, y, z) = (m^2 - n^2, 2mn, m^2 + n^2),$$

where m > n. The corresponding parallelogram has sides p, q and the intersection angle of them θ , where $0 < \theta \le \pi/2$. Noting the homogeneity of these sides, let m, n, p and q be positive rational numbers, then we have the Diophantine system

$$\begin{cases}
mn(m^2 - n^2) = pq\sin\theta, \\
m^2 + mn = p + q.
\end{cases}$$
(1.1)

From Eq. (1.1), $\sin \theta$ is a rational number. Let us consider

$$\sin \theta = \frac{2t}{t^2 + 1},$$

where t is a positive rational number. According to the relationship

$$f(t) = f(1/t) = \frac{2t}{t^2 + 1},$$

we set $0 < t \le 1$.

For t = 1, $\theta = \pi/2$, this is the case studied by R.K. Guy [2]. By the theory of elliptic curves, we prove

Theorem 1.1. If the elliptic curve

$$Y^2 = X^3 + t^2 X^2 - 4t^2 (t^2 + 1)(t^2 - t + 1)X + 4t^4 (t^2 + 1)^2$$

has a rational point P = (X, Y) satisfying the condition

$$0 < X < 2t(t^2 + 1), \quad 0 < Y < tX + 2t^4 + 2t^2$$
 (1.2)

for some t, then there exist infinitely many integer right triangle and integer parallelogram pairs with a common area and a common perimeter for this t.

Download English Version:

https://daneshyari.com/en/article/4593375

Download Persian Version:

https://daneshyari.com/article/4593375

<u>Daneshyari.com</u>