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The analogous theory for level 16 of Ramanujan’s theories of 
elliptic functions to alternative bases is developed by studying 
the level 16 modular function

h(q) = q
∞∏
j=1

(1 − q16j)2(1 − q2j)
(1 − qj)2(1 − q8j)

.
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1. Introduction

In his famous paper [20], Ramanujan derived several remarkable series that converge 
to 1/π, for example,

1
π

= 1
16

∞∑
n=0

(
2n
n

)3 42n + 5
212n , (1.1)
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by studying
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)2

= 3F2

( 1
2 ,

1
2 ,

1
2

1, 1 ; 4k2k′2
)
, (1.2)

where k, k′ and K are, respectively, the modulus, complementary modulus, and com-
plete elliptic integral of the first kind, from Jacobi’s theory of elliptic functions. Identity 
(1.2) can be closely related to modular forms of level 4 via the following reformulation 
[6, Theorem 3.5]

q
d

dq
log

(
w

1 − 16w

)
=

∞∑
j=0

(
2j
j

)3

(w(1 − 16w))j , (1.3)

where

w = q

∞∏
j=1

(1 − qj)8(1 − q4j)16

(1 − q2j)24 (1.4)

and, here and throughout the remainder of this work, |q| < 1. After remarking that 
“There are corresponding theories in which q is replaced by one or other of the functions

q1 = exp
(
−π

√
2K ′

1/K1

)
, q2 = exp

(
−2πK ′

2/(K2
√

3)
)

and

q3 = exp (−2πK ′
3/K3) ,

where

K1 = 2F1
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3
4 ; 1; k2

)
,
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3 ,
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)
,
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(
1
6 ,

5
6 ; 1; k2

)
.”

Ramanujan then offered 16 further formulas for 1/π that arise from modular forms of 
levels 1, 2 and 3, but he provides no details for his proofs. This motivated Berndt et al.
[4] to analyze and develop the corresponding theories for levels 1, 2 and 3, which are now 
collectively known as “Ramanujan’s theories of elliptic functions to alternative bases”. 
We also refer the reader to [9] for a different analysis.

Under the inspiration of Ramanujan’s work, analogous theories have been developed 
for several other levels. Details and further references are summarized in the following 
table.
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