Extremal primes for elliptic curves

Kevin James ${ }^{\text {a,* }}$, Brandon Tran ${ }^{\text {c }}$, Minh-Tam Trinh ${ }^{\text {d, }}$ Phil Wertheimer ${ }^{\mathrm{b}}$, Dania Zantout ${ }^{\mathrm{a}}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Clemson University, Box 340975, Clemson, SC 29634, United States
${ }^{\text {b }}$ Department of Mathematics, University of Maryland, College Park, MD 20742, United States
${ }^{\text {c }}$ Department of Mathematics, MIT, Cambridge, MA 02142, United States
${ }^{\text {d }}$ Department of Mathematics, University of Chicago, Chicago, IL 60637, United States

A R T I C L E I N F O

Article history:

Received 26 June 2015
Received in revised form 25
December 2015
Accepted 2 January 2016
Available online 3 March 2016
Communicated by Steven J. Miller
Keywords:
Frobenius distributions
Trace of Frobenius
Distribution of primes
Elliptic curves
Lang-Trotter conjecture

A B S T R A C T

For an elliptic curve E / \mathbb{Q}, we define an extremal prime for E to be a prime p of good reduction such that the trace of Frobenius of E at p is $\pm\lfloor 2 \sqrt{p}\rfloor$, i.e., maximal or minimal in the Hasse interval. Conditional on the Riemann Hypothesis for certain Hecke L-functions, we prove that if $\operatorname{End}(E)=\mathcal{O}_{K}$, where K is an imaginary quadratic field of discriminant $\neq-3,-4$, then the number of extremal primes $\leq X$ for E is asymptotic to $X^{3 / 4} / \log X$. We give heuristics for related conjectures.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let E / \mathbb{Q} be an elliptic curve. Let p be a prime of good reduction for E, and let \bar{E} / \mathbb{F}_{p} be the corresponding reduction. The trace of Frobenius of E modulo p can be defined

[^0]by $a_{p}(E)=p+1-\# \bar{E}\left(\mathbb{F}_{p}\right)$. Hasse's theorem [Si1, Theorem V.1.1] famously asserts that
\[

$$
\begin{equation*}
-2 \sqrt{p} \leq a_{p}(E) \leq+2 \sqrt{p} \tag{1.1}
\end{equation*}
$$

\]

We therefore say $[-2 \sqrt{p},+2 \sqrt{p}]$ is the Hasse interval of p. By [De], every integer in the Hasse interval of a fixed prime p is the trace of Frobenius of some rational elliptic curve modulo p. However, if we instead fix E / \mathbb{Q} and vary p, then the statistical distribution of the $a_{p}(E)$ is not completely understood.

Hereafter, if f, g denote functions of X, then the phrase " $f \sim g$ as $X \rightarrow \infty$ " stands for $\lim _{X \rightarrow \infty} f / g=1$. In comparison with the unnormalized traces $a_{p}(E)$, we know much more about the distribution of the normalized traces $b_{p}(E)=a_{p}(E) / 2 \sqrt{p}$. Specifically, the latter depends only on whether E has complex multiplication (CM). In the CM case, the distribution of the b_{p} is due to Hecke, cf. [He1,He2]:

Theorem 1.1 (Hecke). If E has $C M$ and $[a, b] \subseteq[-1,+1]$, then the distribution of the $b_{p}(E)$ has a spike at 0 of measure $1 / 2$ and

$$
\begin{align*}
& \#\left\{p \leq X \text { of good reduction for } E: b_{p}(E) \in[a, b] \backslash\{0\}\right\} \\
& \sim \frac{1}{2 \pi}\left(\int_{a}^{b} \frac{1}{\sqrt{1-t^{2}}} \mathrm{~d} t\right) \frac{X}{\log X} \tag{1.2}
\end{align*}
$$

as $X \rightarrow \infty$.
In the non-CM case, the analogous result was known as the Sato-Tate conjecture until its recent proof by Clozel, Harris, Shepherd-Barron and Taylor, cf. [CHT,T,HST], and [BGHT]:

Theorem 1.2 (Clozel, Harris, Shepherd-Barron, Taylor). If E does not have CM and $[a, b] \subseteq[-1,+1]$, then

$$
\begin{align*}
& \#\left\{p \leq X \text { of good reduction for } E: b_{p}(E) \in[a, b]\right\} \\
& \sim \frac{2}{\pi}\left(\int_{\alpha}^{\beta} \sqrt{1-t^{2}} \mathrm{~d} t\right) \frac{X}{\log X} \tag{1.3}
\end{align*}
$$

as $X \rightarrow \infty$.

Finally, the current hypothesis for the distribution of the unnormalized $a_{p}(E)$ is known as the Lang-Trotter conjecture [LT]:

Conjecture 1.3 (Lang-Trotter). Let E / \mathbb{Q} be an elliptic curve and let $r \in \mathbb{Z}$. If either $r \neq 0$ or E does not have CM, then

https://daneshyari.com/en/article/4593380

Download Persian Version:
https://daneshyari.com/article/4593380

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: kevja@clemson.edu (K. James), btran115@mit.edu (B. Tran), mqt@uchicago.edu (M.-T. Trinh), phil.wertheimer@gmail.com (P. Wertheimer), dzantou@g.clemson.edu (D. Zantout).

