

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Extremal primes for elliptic curves

Kevin James ^{a,*}, Brandon Tran ^c, Minh-Tam Trinh ^d, Phil Wertheimer ^b, Dania Zantout ^a

^a Department of Mathematical Sciences, Clemson University, Box 340975,

Clemson, SC 29634, United States

^b Department of Mathematics, University of Maryland, College Park, MD 20742, United States

^c Department of Mathematics, MIT, Cambridge, MA 02142, United States

^d Department of Mathematics, University of Chicago, Chicago, IL 60637,

United States

ARTICLE INFO

Article history: Received 26 June 2015 Received in revised form 25 December 2015 Accepted 2 January 2016 Available online 3 March 2016 Communicated by Steven J. Miller

Keywords: Frobenius distributions Trace of Frobenius Distribution of primes Elliptic curves Lang-Trotter conjecture

ABSTRACT

For an elliptic curve E/\mathbb{Q} , we define an extremal prime for E to be a prime p of good reduction such that the trace of Frobenius of E at p is $\pm \lfloor 2\sqrt{p} \rfloor$, i.e., maximal or minimal in the Hasse interval. Conditional on the Riemann Hypothesis for certain Hecke *L*-functions, we prove that if $\text{End}(E) = \mathcal{O}_K$, where K is an imaginary quadratic field of discriminant $\neq -3, -4$, then the number of extremal primes $\leq X$ for E is asymptotic to $X^{3/4}/\log X$. We give heuristics for related conjectures.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let E/\mathbb{Q} be an elliptic curve. Let p be a prime of good reduction for E, and let $\overline{E}/\mathbb{F}_p$ be the corresponding reduction. The *trace of Frobenius of* E modulo p can be defined

http://dx.doi.org/10.1016/j.jnt.2016.01.009

^{*} Corresponding author.

E-mail addresses: kevja@clemson.edu (K. James), btran115@mit.edu (B. Tran), mqt@uchicago.edu (M.-T. Trinh), phil.wertheimer@gmail.com (P. Wertheimer), dzantou@g.clemson.edu (D. Zantout).

⁰⁰²²⁻³¹⁴X/© 2016 Elsevier Inc. All rights reserved.

by $a_p(E) = p + 1 - \#\overline{E}(\mathbb{F}_p)$. Hasse's theorem [Si1, Theorem V.1.1] famously asserts that

$$-2\sqrt{p} \le a_p(E) \le +2\sqrt{p}.\tag{1.1}$$

We therefore say $[-2\sqrt{p}, +2\sqrt{p}]$ is the *Hasse interval* of p. By [De], every integer in the Hasse interval of a fixed prime p is the trace of Frobenius of some rational elliptic curve modulo p. However, if we instead fix E/\mathbb{Q} and vary p, then the statistical distribution of the $a_p(E)$ is not completely understood.

Hereafter, if f, g denote functions of X, then the phrase " $f \sim g$ as $X \to \infty$ " stands for $\lim_{X\to\infty} f/g = 1$. In comparison with the *unnormalized* traces $a_p(E)$, we know much more about the distribution of the *normalized* traces $b_p(E) = a_p(E)/2\sqrt{p}$. Specifically, the latter depends only on whether E has complex multiplication (CM). In the CM case, the distribution of the b_p is due to Hecke, cf. [He1,He2]:

Theorem 1.1 (Hecke). If E has CM and $[a,b] \subseteq [-1,+1]$, then the distribution of the $b_p(E)$ has a spike at 0 of measure 1/2 and

$$#\{p \le X \text{ of good reduction for } E : b_p(E) \in [a, b] \setminus \{0\}\}$$
$$\sim \frac{1}{2\pi} \left(\int_a^b \frac{1}{\sqrt{1 - t^2}} \, \mathrm{d}t \right) \frac{X}{\log X}$$
(1.2)

as $X \to \infty$.

In the non-CM case, the analogous result was known as the Sato–Tate conjecture until its recent proof by Clozel, Harris, Shepherd-Barron and Taylor, cf. [CHT,T,HST], and [BGHT]:

Theorem 1.2 (Clozel, Harris, Shepherd-Barron, Taylor). If E does not have CM and $[a,b] \subseteq [-1,+1]$, then

$$\#\{p \le X \text{ of good reduction for } E : b_p(E) \in [a, b]\}$$
$$\sim \frac{2}{\pi} \left(\int_{\alpha}^{\beta} \sqrt{1 - t^2} \, \mathrm{d}t \right) \frac{X}{\log X}$$
(1.3)

as $X \to \infty$.

Finally, the current hypothesis for the distribution of the unnormalized $a_p(E)$ is known as the Lang–Trotter conjecture [LT]:

Conjecture 1.3 (Lang-Trotter). Let E/\mathbb{Q} be an elliptic curve and let $r \in \mathbb{Z}$. If either $r \neq 0$ or E does not have CM, then

Download English Version:

https://daneshyari.com/en/article/4593380

Download Persian Version:

https://daneshyari.com/article/4593380

Daneshyari.com