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It is known that the Riemann hypothesis holds if and 
only if the function χ(0,1) can be approximated by linear 
combinations of uα in L2(0, 1). Here uα(x) is defined by 
[α/x] − α[1/x] for 0 < α < 1. In this note we generalize 
the Beurling’s equivalent condition by replacing the function 
χ(0,1) with χ(a,b) for any 0 ≤ a < b ≤ 1.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let N be the linear space generated by the functions uα on (0, 1) defined by

uα(x) := [α/x] − α[1/x]

for 0 < α < 1. And the closure of N in Lp(0, 1) is denoted by N p.
Due to Nyman and Beurling, the density of N is closely related to the location of 

zeros of the Riemann zeta function. In [7], Nyman showed that the Riemann hypothesis 
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is true if and only if N 2 = L2(0, 1). Later, Beurling gave a generalization of Nyman’s 
result in [5].

Theorem 1.1. For 1 < p < ∞, the following statements are equivalent.

(i) The Riemann zeta function ζ(s) has no zeros in the half-plane �s > 1/p.
(ii) N p = Lp(0, 1).
(iii) χ(0,1) ∈ N p, where χ is the characteristic function.

There is exhaustive list of results in a density condition (ii). For example we refer 
[1,2,6]. In this note we generalize the condition (iii) as follows.

Theorem 1.2. The Riemann hypothesis is true if and only if the space N 2 contains a 
function χ(a,b) for any 0 ≤ a < b ≤ 1.

2. Proof and questions

We define a compression operator Ts with 0 < s < 1 by

Tsf(x) :=
{
f(x/s), 0 < x ≤ s

0, s < x < 1

for f ∈ N 2. It is known that the space N 2 is closed under the operator Ts for any 
0 < s < 1. See [5] for example.

To prove the Theorem 1.2, we use the Bercovici–Foias theorem which characterizes 
the complement space of N in L2(0, 1) as functions induced by zeros of the Riemann 
zeta function on the half-plane with �s > 1/2. More precisely, they showed the following 
theorem in [4].

Theorem 2.1. Let N⊥ be the orthogonal complement of N in L2(0, 1). Then we have

N⊥ = spanL2(0,1){t → ts−1 logk t, ζ(s) = 0 with �s > 1/2},

where 0 ≤ k ≤ multiplicity of s.

See also [3,8] for related materials. Now we are ready to prove the Theorem 1.2.

Proof of Theorem 1.2. If the Riemann hypothesis holds, the space N 2 = L2(0, 1) by the 
Beurling’s result. So N 2 contains a function χ(a,b) for any 0 ≤ a < b ≤ 1.

To prove the other direction we first consider a case of a = 0. Assume that a function 
χ(0,b) is in N 2 for some 0 < b ≤ 1. By applying the operator Ts to χ(0,b), we have that 
χ(0,b′) is in N 2 for any 0 < b′ < b. So any function xs−1 with �s > 1/2 cannot be in 
N⊥. By the Theorem 2.1, the zeta function has no non-trivial zeros.
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