

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

A generalization of Beurling's criterion for the Riemann hypothesis

Jongho Yang

Department of Mathematics, Korea University, Seoul 02841, Republic of Korea

A R T I C L E I N F O

Article history: Received 3 December 2015 Received in revised form 21 January 2016 Accepted 21 January 2016 Available online 4 March 2016 Communicated by David Goss

MSC: 11Mxx

Keywords: Riemann hypothesis Nyman–Beurling theorem Bercovici–Foias theorem ABSTRACT

It is known that the Riemann hypothesis holds if and only if the function $\chi_{(0,1)}$ can be approximated by linear combinations of u_{α} in $L^2(0,1)$. Here $u_{\alpha}(x)$ is defined by $[\alpha/x] - \alpha[1/x]$ for $0 < \alpha < 1$. In this note we generalize the Beurling's equivalent condition by replacing the function $\chi_{(0,1)}$ with $\chi_{(a,b)}$ for any $0 \le a < b \le 1$.

@ 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{N} be the linear space generated by the functions u_{α} on (0,1) defined by

$$u_{\alpha}(x) := [\alpha/x] - \alpha[1/x]$$

for $0 < \alpha < 1$. And the closure of \mathcal{N} in $L^p(0,1)$ is denoted by \mathcal{N}^p .

Due to Nyman and Beurling, the density of \mathcal{N} is closely related to the location of zeros of the Riemann zeta function. In [7], Nyman showed that the Riemann hypothesis

E-mail address: cachya@korea.ac.kr.

 $[\]label{eq:http://dx.doi.org/10.1016/j.jnt.2016.01.024} 0022-314 X @ 2016 Elsevier Inc. All rights reserved.$

is true if and only if $\mathcal{N}^2 = L^2(0, 1)$. Later, Beurling gave a generalization of Nyman's result in [5].

Theorem 1.1. For 1 , the following statements are equivalent.

(i) The Riemann zeta function $\zeta(s)$ has no zeros in the half-plane $\Re s > 1/p$. (ii) $\mathcal{N}^p = L^p(0, 1)$. (iii) $\chi_{(0,1)} \in \mathcal{N}^p$, where χ is the characteristic function.

There is exhaustive list of results in a density condition (ii). For example we refer [1,2,6]. In this note we generalize the condition (iii) as follows.

Theorem 1.2. The Riemann hypothesis is true if and only if the space \mathcal{N}^2 contains a function $\chi_{(a,b)}$ for any $0 \le a < b \le 1$.

2. Proof and questions

We define a compression operator T_s with 0 < s < 1 by

$$T_s f(x) := \begin{cases} f(x/s), & 0 < x \le s \\ 0, & s < x < 1 \end{cases}$$

for $f \in \mathcal{N}^2$. It is known that the space \mathcal{N}^2 is closed under the operator T_s for any 0 < s < 1. See [5] for example.

To prove the Theorem 1.2, we use the Bercovici–Foias theorem which characterizes the complement space of \mathcal{N} in $L^2(0,1)$ as functions induced by zeros of the Riemann zeta function on the half-plane with $\Re s > 1/2$. More precisely, they showed the following theorem in [4].

Theorem 2.1. Let \mathcal{N}^{\perp} be the orthogonal complement of \mathcal{N} in $L^2(0,1)$. Then we have

$$\mathcal{N}^{\perp} = span_{L^{2}(0,1)} \{ t \to t^{s-1} \log^{k} t, \zeta(s) = 0 \text{ with } \Re s > 1/2 \},\$$

where $0 \leq k \leq$ multiplicity of s.

See also [3,8] for related materials. Now we are ready to prove the Theorem 1.2.

Proof of Theorem 1.2. If the Riemann hypothesis holds, the space $\mathcal{N}^2 = L^2(0, 1)$ by the Beurling's result. So \mathcal{N}^2 contains a function $\chi_{(a,b)}$ for any $0 \le a < b \le 1$.

To prove the other direction we first consider a case of a = 0. Assume that a function $\chi_{(0,b)}$ is in \mathcal{N}^2 for some $0 < b \leq 1$. By applying the operator T_s to $\chi_{(0,b)}$, we have that $\chi_{(0,b')}$ is in \mathcal{N}^2 for any 0 < b' < b. So any function x^{s-1} with $\Re s > 1/2$ cannot be in \mathcal{N}^{\perp} . By the Theorem 2.1, the zeta function has no non-trivial zeros.

Download English Version:

https://daneshyari.com/en/article/4593381

Download Persian Version:

https://daneshyari.com/article/4593381

Daneshyari.com