

Contents lists available at ScienceDirect

Journal of Number Theory

Asymptotics for cuspidal representations by functoriality from GL(2)

Huixue Lao^a, Mark McKee^b, Yangbo Ye^{b,*}

^a School of Mathematical Sciences, Shandong Normal University, Jinan, Shandong 250014, China

ARTICLE INFO

Article history:
Received 8 June 2015
Received in revised form 16 January 2016
Accepted 22 January 2016
Available online 3 March 2016
Communicated by David Goss

MSC:

11F70

11F66 11F30

Keywords: Cuspidal representation Functoriality GL(2)Fourier coefficient

Asymptotic expansion

ABSTRACT

Let π be a unitary automorphic cuspidal representation of $GL_2(\mathbb{Q}_{\mathbb{A}})$ with Fourier coefficients $\lambda_{\pi}(n)$. Asymptotic expansions of certain sums of $\lambda_{\pi}(n)$ are proved using known functorial liftings from GL_2 , including symmetric powers, isobaric products, exterior squares, and base change. These asymptotic expansions are manifestation of the underlying functoriality and reflect value distribution of $\lambda_{\pi}(n)$ on integers, squares, cubes and fourth powers.

© 2016 Elsevier Inc. All rights reserved.

E-mail addresses: lhxsdnu@163.com (H. Lao), mark-mckee@uiowa.edu (M. McKee), yangbo-ye@uiowa.edu (Y. Ye).

Department of Mathematics, The University of Iowa, Iowa City, IA 52242-1419, USA

^{*} Corresponding author.

1. Introduction

Let $\pi = \otimes \pi_p$ be a unitary automorphic irreducible cuspidal representation of $GL_2(\mathbb{Q}_{\mathbb{A}})$ with Fourier coefficients $\lambda_{\pi}(n)$. For each finite p for which π_p is unramified we can associate to π_p Satake parameters $\alpha_{\pi}(p), \beta_{\pi}(p) \in \mathbb{C}$ such that

$$\lambda_{\pi}(p) = \alpha_{\pi}(p) + \beta_{\pi}(p), \quad |\alpha_{\pi}(p)\beta_{\pi}(p)| = 1.$$

For ramified π_p , one can still choose $\alpha_{\pi}(p), \beta_{\pi}(p) \in \mathbb{C}$, by allowing some of them to be zero, such that the finite-part automorphic *L*-function attached to π is

$$L(s,\pi) = \sum_{n=1}^{\infty} \frac{\lambda_{\pi}(n)}{n^s} = \prod_{p < \infty} (1 - \alpha_{\pi}(p)p^{-s})^{-1} (1 - \beta_{\pi}(p)p^{-s})^{-1}$$
(1.1)

for $\operatorname{Re} s > 1$.

If π is associated with a holomorphic cusp form for a congruence subgroup of $SL_2(\mathbb{Z})$, the Ramanujan bound was proved by Deligne [4]

$$|\alpha_{\pi}(p)| = |\beta_{\pi}(p)| = 1$$

for p with π_p being unramified. For other cases the best known bound toward the Ramanujan conjecture is

$$|\alpha_{\pi}(p)|, |\beta_{\pi}(p)| \le p^{\frac{7}{64}},$$
 (1.2)

which is due to Kim and Sarnak [12].

Let us review known functoriality from an automorphic cuspidal representation π of $GL_2(\mathbb{Q}_{\mathbb{A}})$ (cf. Kim [11]).

- 1.1. The symmetric square lift. By Gelbart and Jacquet [5] $Sym^2\pi$ is an automorphic representation of $GL_3(\mathbb{Q}_{\mathbb{A}})$. It is cuspidal if and only if π is not monomial. Here π is monomial which means that there is a nontrivial grössencharacter ω so that $\pi \cong \pi \otimes \omega$. This in turn means that π corresponds to a dihedral Galois representation $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$.
- 1.2. The symmetric cube. Kim and Shahidi [14] proved that $Sym^3\pi$ is an automorphic representation of $GL_4(\mathbb{Q}_{\mathbb{A}})$. In addition, $Sym^3\pi$ is cuspidal if and only if π does not correspond to a dihedral or tetrahedral Galois representation. We recall π is tetrahedral means the π is not monomial and there exists a grössencharacter $\eta \neq 1$ so that $Ad^2\pi \cong Ad^2\pi \otimes \eta$. Here $Ad^2\pi = Sym^2\pi \otimes \omega_{\pi}^{-1}$, where ω_{π} is the central character of π .
- 1.3. The symmetric fourth power. By Kim [10] $Sym^4\pi$ is an automorphic representation of $GL_5(\mathbb{Q}_{\mathbb{A}})$. It is either cuspidal or unitarily induced from cuspidal representations of $GL_2(\mathbb{Q}_{\mathbb{A}})$ and $GL_3(\mathbb{Q}_{\mathbb{A}})$. More precisely, $Sym^4\pi$ is cuspidal unless π corresponds to either a dihedral, tetrahedral, or octahedral Galois representation (Kim and Shahidi [13]). Here π is octahedral means $Ad^3\pi$ is cuspidal, but there exists a nontrivial quadratic character μ so that $Ad^3\pi \cong Ad^3\pi \otimes \mu$.

Download English Version:

https://daneshyari.com/en/article/4593383

Download Persian Version:

https://daneshyari.com/article/4593383

<u>Daneshyari.com</u>