Congruences and asymptotics of Andrews' singular overpartitions

Shi-Chao Chen
Institute of Contemporary Mathematics, School of Mathematics and Statistics, Henan University, Kaifeng, 475004, PR China

A R T I C L E I N F O

Article history

Received 27 October 2015
Received in revised form 15 January 2016
Accepted 16 January 2016
Available online 4 March 2016
Communicated by David Goss

MSC:

05 A 17
11P83
Keywords:
Singular overpartition
Congruences
Asymptotic formula

Abstract

Recently, singular overpartitions were defined and studied by G.E. Andrews. He showed that such partitions can be enumerated by $\bar{C}_{k, i}(n)$, the number of overpartitions of n such that no part is divisible by k and only parts $\equiv \pm i$ $(\bmod k)$ may be overlined. Andrews proved some congruences for $\bar{C}_{3,1}(n)(\bmod 3)$. The author, M.D. Hirschhorn and J.A. Sellers found infinite families of congruences for $\bar{C}_{3,1}(n)$, $\bar{C}_{4,1}(n), \bar{C}_{6,1}(n)$ and $\bar{C}_{6,2}(n)$. Z. Ahmed and N.D. Baruah obtained some new congruences for $\bar{C}_{3,1}(n), \bar{C}_{8,2}(n), \bar{C}_{12,2}(n)$, $\bar{C}_{12,4}(n), \bar{C}_{24,8}(n)$ and $\bar{C}_{48,16}(n)$. In this paper, we prove some new congruences for $\bar{C}_{3,1}(n)$ and $\bar{C}_{4,1}(n)$ modulo powers of 2 and congruences of $\bar{C}_{k, i}(n)$ for a family of pairs k, i. We also obtain an asymptotic formula for $\bar{C}_{k, i}(n)$ as n tends to infinity.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

S. Corteel and J. Loverjoy [9] introduced overpartitions ten years ago. An overpartition of n is a non-increasing sequence of natural numbers whose sum is n in which the first occurrence of a number may be overlined. Recently, G.E. Andrews [3] introduced singular

[^0]overpartitions. To describe such partitions, we recall the Frobenius symbol is a two-rowed array
$$
\binom{a_{1}, a_{2}, \cdots, a_{r}}{b_{1}, b_{2}, \cdots, b_{r}}
$$
where $\sum\left(a_{i}+b_{i}+1\right)=n$ and $a_{1}>a_{2}>\cdots>a_{r} \geq 0, b_{1}>b_{2}>\cdots>b_{r} \geq 0$. There is a natural mapping that reveals a one-to-one correspondence between the Frobenius symbols for n and the ordinary partitions of n. "Singular overpartitions" are Frobenius symbols for n with at most one overlined entry in each row. More precisely, for two positive integers k and i, a column $\frac{a_{j}}{b_{j}}$ in a Frobenius symbol is (k, i)-positive if $a_{j}-b_{j} \geq$ $k-i-1$ and (k, i)-negative if $a_{j}-b_{j} \leq-i+1$. If $-i+1<a_{j}-b_{j}<k-i+1$, then we say the column is (k, i)-neutral. Two columns have the same parity if they are both (k, i)-positive or (k, i)-negative. We can divide the Frobenius symbol into (k, i)-block such that all the entries in each block have either the same (k, i)-parity or are (k, i)-neutral. The first non-neutral column in each parity block is called the anchor of the block. A (k, i)-parity block is neutral if all columns in it are neutral and a (k, i)-parity block is positive (resp. negative) if it contains no (k, i)-negative (resp. positive) columns.

A Frobenius symbol is (k, i)-singular if
(1) there are no overlined entries, or
(2) the one overlined entry on the top row occurs in the anchor of a (k, i)-positive block, or
(3) the one overlined entry on the bottom row occurs in an anchor of a (k, i)-negative block, and
(4) if there is one overlined entry in each row, then they occur in adjacent (k, i)-parity blocks.

Let $\bar{Q}_{k, i}(n)$ denote the number of such singular overpartitions for $1 \leq i<\frac{k}{2}$. G.E. Andrews proved that

$$
\bar{Q}_{k, i}(n)=\bar{C}_{k, i}(n),
$$

where $\bar{C}_{k, i}(n)$ is the number of overpartitions of n such that no part is divisible by k and only parts $\equiv \pm i(\bmod k)$ may be overlined. Therefore, for $k \geq 3$ and $1 \leq i \leq\left\lfloor\frac{k}{2}\right\rfloor$, we have

$$
\begin{align*}
\sum_{n=0}^{\infty} \bar{Q}_{k, i}(n) q^{n} & =\sum_{n=0}^{\infty} \bar{C}_{k, i}(n) q^{n} \\
& =\frac{\left(q^{k} ; q^{k}\right)_{\infty}\left(-q^{i} ; q^{k}\right)_{\infty}\left(-q^{k-i} ; q^{k}\right)_{\infty}}{(q ; q)_{\infty}} \tag{1}
\end{align*}
$$

https://daneshyari.com/en/article/4593384

Download Persian Version:

https://daneshyari.com/article/4593384

Daneshyari.com

[^0]: E-mail address: schen@henu.edu.cn.

