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The family of Euclidean triangles having some fixed perimeter 
and area can be identified with a subset of points on 
a nonsingular cubic plane curve, i.e., an elliptic curve; 
furthermore, if the perimeter and the square of the area are 
rational, then the curve has rational coordinates and those 
triangles with rational side lengths correspond to rational 
points on the curve. We first recall this connection, and 
then we develop hyperbolic analogs. There are interesting 
relationships between the arithmetic on the elliptic curve 
(rank and torsion) and the family of triangles living on it. 
In the hyperbolic setting, the analogous plane curve is a 
quartic with two singularities at infinity, so the genus is still 1. 
We can add points geometrically by realizing the quartic as 
the intersection of two quadric surfaces. This allows us to 
construct nontrivial examples of rational hyperbolic triangles 
having the same inradius and perimeter as a given rational 
right hyperbolic triangle.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Connections between families of triangles and elliptic curves have been long studied. 
Consider, for example, the famous congruent number problem: What rational numbers 
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A are the area of a right triangle with rational side lengths? We call such A congruent 
numbers. Using similar triangles, we may assume A is a squarefree positive integer. For 
example, 6 is a congruent number since it is the area of the (3, 4, 5)-right triangle. Euler 
showed that 7 is a congruent number, but 1, 2, and 3, are not. It turns out that a positive 
rational number A is a congruent number if and only if the elliptic curve y2 = x3 −A2x

has a rational point in the first quadrant; in fact, since the only torsion points on this 
elliptic curve have order dividing two, A being congruent here is equivalent to the group of 
rational points on the curve having positive rank. More generally, one can ask whether A
is the area of a rational triangle (i.e., a triangle having rational side lengths) one of whose 
internal angles is some fixed value θ ∈ (0, π). Such numbers correspond to the existence 
of a certain kind of rational point on elliptic curves of the form y2 = x(x −Aλ)(x +A/λ)
where λ = sin(θ)/(cos(θ) + 1) as found in Problem 3, Section 2, Chapter I of [Kob93].

Similarly, one can consider rational numbers A which are the area of a rational triangle 
having some fixed perimeter instead of a fixed internal angle. Again, the existence of such 
a triangle corresponds to the existence of a rational point on an elliptic curve, namely, 
a rational point in the first quadrant on the curve s2xy − A2 = sxy(x + y) where s
is the semiperimeter defined to be half the perimeter. We will recall this connection 
in Section 2. Note that the area A of a triangle is determined via Heron’s formula 
A = rs where r is the inradius, so we are led to study rational points on the curves 
Cr,s : s(xy− r2) = xy(x + y), which are similar to those studied in [CG] and/or [GM06]. 
From the equation for Cr,s, it is clear that similar triangles do, in fact, define isomorphic 
curves and that the family of curves can be parameterized by k = s/r. We will keep the 
parameters r, s separate, however, to motivate the hyperbolic analogs which have no 
chance of exploiting similarity since similar hyperbolic triangles are actually congruent.

In general, any triangle gives rise to a point on Cr,s in the first quadrant where r is 
the triangle’s inradius and s is its semiperimeter. (Here s ≥ 3

√
3r > 0, and conversely, 

for any pair of real numbers r, s satisfying this inequality, there is a triangle with these 
parameters.) Such a curve Cr,s will be an elliptic curve provided the triangle we started 
with was not equilateral or, equivalently, s > 3

√
3r. Moreover, if the given triangle 

is rational, then the point will have rational coordinates and Cr,s will have rational 
coefficients since here A2 ∈ Q even though A itself is not necessarily rational.

In particular, when s, r2 ∈ Q and s > 3
√

3r > 0, one can ask questions about how the 
structure of the Mordell–Weil group Cr,s(Q) is related to the family of rational triangles 
with parameters r, s. For example, “When do the points coming from rational triangles 
have infinite order?” It turns out that many Pythagorean triples give rise to rational 
points of infinite order (see Theorem 4 below), a fact which comes from the observation 
that points corresponding to triangles cannot have odd order. There can be points of 
even order coming from triangles, and such a point will have order 2 or 6 if and only if 
the corresponding triangle is isosceles.

We can also play the same game for hyperbolic triangles. The natural curve we get 
for hyperbolic triangles of a fixed inradius r and fixed semiperimeter s, however, is a 
quartic curve
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