Fast computation of the partition function

Mircea Merca
Department of Mathematics, University of Craiova, Craiova, DJ 200585, Romania

A R T I C L E I N F O

Article history:

Received 15 December 2015
Received in revised form 20 January 2016
Accepted 21 January 2016
Available online 4 March 2016
Communicated by David Goss

MSC:

05A17
05A19
11P81
11 P 82
Keywords:
Integer partitions
Partition function
Recurrence relation

Abstract

In this paper, the author provides a method to compute the values of Euler's partition function $p(n)$ that requires only the values of $p(k)$ with $k \leqslant n / 2$. This method is combined with Ewell's recurrence relation for the partition function $p(n)$ to obtain a simple and fast computation of the value of $p(n)$.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Recall [1] that a partition of a positive integer n is a non-increasing sequence of positive integers whose sum is n, i.e.,

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n
$$

[^0]The partition function $p(n)$ counts the number of such partitions of n. For example, the partitions of 4 are:

$$
4, \quad 3+1, \quad 2+2, \quad 2+1+1 \quad \text { and } \quad 1+1+1+1
$$

Therefore, $p(4)=5$.
Euler [3] began the mathematical theory of partitions in 1748 by discovering the generating function of the partition function $p(n)$,

$$
\sum_{n=0}^{\infty} p(n) q^{n}=\frac{1}{(q ; q)_{\infty}}
$$

where

$$
(a ; q)_{n}=(1-a)(1-a q)\left(1-a q^{2}\right) \cdots\left(1-a q^{n-1}\right)
$$

is the q-shifted factorial, with $(a ; q)_{0}=1$. Shortly after that, he gives an efficient method of computing the partition function $p(n)$, i.e.,

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}(-1)^{k} p\left(n-\frac{k(3 k-1)}{2}\right)=\delta_{0, n} \tag{1}
\end{equation*}
$$

where $p(n)=0$ for any negative integer n and $\delta_{i, j}$ is the Kronecker delta. As we can see in [5, p. 286], this recurrence relation has about $\sqrt{8 n / 3}$ terms. In fact, computing the value of $p(n)$ with this relation requires all the values of $p(k), k<n$.

Computing the values of the partition function $p(n)$ has been of interest to mathematicians. Over the years, mathematicians have given other recurrence relations for the partition function $p(n)$. From these, we remark a linear recurrence relation [4, Theorem 1.2] that has less than $\sqrt{2 n}$ terms, i.e.,

$$
\begin{equation*}
p(n)+2 \sum_{k=1}^{\infty}(-1)^{k} p\left(n-2 k^{2}\right)-\sum_{k=0}^{\infty} p\left(\frac{n}{4}-\frac{k(k+1)}{8}\right)=0 \tag{2}
\end{equation*}
$$

where $p(x)=0$ if x is not an integer. In other words, this recurrence is more efficient than Euler's recurrence. However, in this case computing the value of $p(n)$ requires all the values of $p(k), k<n-1$.

There is a better way to compute an isolated value of $p(n)$, due to Hardy-RamanujanRademacher formula

$$
p(n)=\frac{1}{\pi \sqrt{2}} \sum_{k=1}^{\infty} \sqrt{k} A_{k}(n) \frac{d}{d n}\left(\frac{1}{\sqrt{n-\frac{1}{24}}} \sinh \left[\frac{\pi}{k} \sqrt{\frac{2}{3}\left(n-\frac{1}{24}\right)}\right]\right)
$$

https://daneshyari.com/en/article/4593387

Download Persian Version:
https://daneshyari.com/article/4593387

Daneshyari.com

[^0]: E-mail address: mircea.merca@profinfo.edu.ro.

