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In this paper, we establish a double inequality for the gamma 
function, from which we deduce the following approximation 
formula:
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which is more accurate than the Burnside, Gosper, Ramanu-
jan, Windschitl, and Nemes formulas. We develop the previous 
approximation formula to produce an asymptotic expansion.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Stirling’s formula

n! ∼
√

2πn
(n
e

)n

, n ∈ N := {1, 2, . . .} (1.1)
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has many applications in statistical physics, probability theory and number theory. Ac-
tually, it was first discovered in 1733 by the French mathematician Abraham de Moivre 
(1667–1754) in the form

n! ∼ constant ·
√
n(n/e)n

when he was studying the Gaussian distribution and the central limit theorem. Af-
terwards, the Scottish mathematician James Stirling (1692–1770) found the missing 
constant 

√
2π when he was trying to give the normal approximation of the binomial 

distribution.
Stirling’s series for the gamma function is given (see [1, p. 257, Eq. (6.1.40)]) by
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as x → ∞, where Bn (n ∈ N0 := N ∪ {0}) are the Bernoulli numbers defined by the 
following generating function:
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n! , |z| < 2π.

The following asymptotic formula is due to Laplace
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as x → ∞ (see [1, p. 257, Eq. (6.1.37)]). The expression (1.3) is sometimes incorrectly 
called Stirling’s series (see [19, pp. 2–3]). Stirling’s formula is in fact the first approxi-
mation to the asymptotic formula (1.3).

Inspired by (1.1), Burnside [10] found a slightly more accurate approximation than 
Stirling’s formula as follows:
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. (1.4)

A much better approximation is the following the Gosper formula [20]:
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. (1.5)

The formulas (1.4) and (1.5) have motivated a large number of research papers; see [6,
7,9,17,26–29,31–39,41–43,51,52].



Download English Version:

https://daneshyari.com/en/article/4593388

Download Persian Version:

https://daneshyari.com/article/4593388

Daneshyari.com

https://daneshyari.com/en/article/4593388
https://daneshyari.com/article/4593388
https://daneshyari.com

