The optimal constants of the mixed (ℓ_{1}, ℓ_{2})-Littlewood inequality

Daniel Pellegrino ${ }^{1}$
Departamento de Matemática, Universidade Federal da Paraíba, 58.051-900 - João Pessoa, Brazil

A R T I C L E I N F O

Article history:

Received 10 March 2015
Received in revised form 1 August 2015
Accepted 1 August 2015
Available online 22 October 2015
Communicated by David Goss
Dedicated to Noêmia Pellegrino

$M S C$:

11Y60
32A22
47H60
Keywords:
Mixed (ℓ_{1}, ℓ_{2})-Littlewood inequality
Absolutely summing operators

Abstract

Text. In this note, among other results, we find the optimal constants of the generalized Bohnenblust-Hille inequality for m-linear forms over \mathbb{R} and with multiple exponents $(1,2, \ldots, 2)$, sometimes called mixed $\left(\ell_{1}, \ell_{2}\right)$-Littlewood inequality. We show that these optimal constants are precisely $(\sqrt{2})^{m-1}$ and this is somewhat surprising since a series of recent papers have shown that similar constants have a sublinear growth. This result answers a question raised by Albuquerque et al. in a paper published in 2014 in the Journal of Functional Analysis.

Video. For a video summary of this paper, please visit https://youtu.be/KnKtjbvsbW0.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the recent years a lot of papers (see, for instance, [4,6,9,15] and the references therein) have been dedicated to the search of best (or even optimal constants) for a class of famous inequalities, including the Littlewood's $4 / 3$ inequality, the Bohnenblust-Hille inequality and the multilinear Hardy-Littlewood inequality (see [5,12,13]). The search

[^0]of these constants, besides its intrinsic interest, have been shown to be important in different areas of Mathematics and even in Physics (see [6,14]). In this paper we find the optimal constants of a class of inequalities that encompasses the sometimes called mixed $\left(\ell_{1}, \ell_{2}\right)$-Littlewood inequality, which plays an important role in the recent development of the theory related to the Bohnenblust-Hille inequality.

The Khinchine inequality (see [8]) asserts that for all $0<p<\infty$, there exist positive constants A_{p} and B_{p} such that

$$
\begin{equation*}
A_{p}\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}} \leq\left(\int_{0}^{1}\left|\sum_{n=1}^{N} a_{n} r_{n}(t)\right|^{p} d t\right)^{\frac{1}{p}} \leq B_{p}\left(\sum_{n=1}^{N}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}} \tag{1.1}
\end{equation*}
$$

for every positive integer N and all real scalars a_{1}, \ldots, a_{N} (here, r_{n} denotes the n-th Rademacher function, which is defined in $[0,1]$ by $\left.r_{n}(t)=\operatorname{sgn}\left(\sin 2^{n+1} \pi t\right)\right)$.

The optimal constants of the Khinchine inequality are known. It is simple to observe that the optimal value of A_{p} is 1 for all $p \geq 2$ and $B_{p}=1$ for all $p \leq 2$. For real scalars, U. Haagerup (see [11]) proved that the optimal constants A_{p} are (see also [8, page 23])

$$
\begin{equation*}
A_{p}=\frac{1}{\sqrt{2}}\left(\frac{\Gamma\left(\frac{p+1}{2}\right)}{\sqrt{\pi}}\right)^{\frac{1}{p}}, \quad \text { for } 1.85 \approx p_{0}<p<2 \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{p}=2^{\frac{1}{2}-\frac{1}{p}}, \quad \text { for } 1 \leq p \leq p_{0} \approx 1.85 \tag{1.3}
\end{equation*}
$$

The exact definition of p_{0} is the following: $p_{0} \in(1,2)$ is the unique real number satisfying

$$
\Gamma\left(\frac{p_{0}+1}{2}\right)=\frac{\sqrt{\pi}}{2}
$$

Note that the Khinchine inequality tells us that

$$
\begin{equation*}
\left(\int_{0}^{1}\left|\sum_{n=1}^{N} a_{n} r_{n}(t)\right|^{p} d t\right)^{\frac{1}{p}} \leq B_{p} A_{r}^{-1}\left(\int_{0}^{1}\left|\sum_{n=1}^{N} a_{n} r_{n}(t)\right|^{r} d t\right)^{\frac{1}{r}} \tag{1.4}
\end{equation*}
$$

regardless of the $0<p, r<\infty$. From now on, as usual, c_{0} denotes Banach space, endowed with the sup norm, of the sequences of scalars converging to zero. If $U: c_{0} \times c_{0} \rightarrow \mathbb{R}$ is a bilinear form, from the Khinchine inequality (and noting that from (1.3) we have $A_{1}=2^{-1 / 2}$) we have, for all positive integers N,

$$
\sum_{i=1}^{N}\left(\sum_{j=1}^{N}\left|U\left(e_{i}, e_{j}\right)\right|^{2}\right)^{\frac{1}{2}} \leq \sqrt{2} \sum_{i=1}^{N} \int_{0}^{1}\left|\sum_{j=1}^{N} r_{j}(t) U\left(e_{i}, e_{j}\right)\right| d t
$$

https://daneshyari.com/en/article/4593395

Download Persian Version:
https://daneshyari.com/article/4593395

Daneshyari.com

[^0]: E-mail addresses: pellegrino@pq.cnpq.br, dmpellegrino@gmail.com.
 ${ }^{1}$ The author is supported by CNPq Grant 401735/2013-3-PVE-Linha 2 and INCT-Matemática.

