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Text. In this note, among other results, we find the opti-
mal constants of the generalized Bohnenblust–Hille inequal-
ity for m-linear forms over R and with multiple exponents 
(1, 2, . . . , 2), sometimes called mixed (�1, �2)-Littlewood in-
equality. We show that these optimal constants are precisely (√

2
)m−1 and this is somewhat surprising since a series of re-

cent papers have shown that similar constants have a sublinear 
growth. This result answers a question raised by Albuquerque 
et al. in a paper published in 2014 in the Journal of Functional 
Analysis.
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1. Introduction

In the recent years a lot of papers (see, for instance, [4,6,9,15] and the references 
therein) have been dedicated to the search of best (or even optimal constants) for a class 
of famous inequalities, including the Littlewood’s 4/3 inequality, the Bohnenblust–Hille 
inequality and the multilinear Hardy–Littlewood inequality (see [5,12,13]). The search 
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of these constants, besides its intrinsic interest, have been shown to be important in 
different areas of Mathematics and even in Physics (see [6,14]). In this paper we find the 
optimal constants of a class of inequalities that encompasses the sometimes called mixed 
(�1, �2)-Littlewood inequality, which plays an important role in the recent development 
of the theory related to the Bohnenblust–Hille inequality.

The Khinchine inequality (see [8]) asserts that for all 0 < p < ∞, there exist positive 
constants Ap and Bp such that
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for every positive integer N and all real scalars a1, . . . , aN (here, rn denotes the n-th
Rademacher function, which is defined in [0, 1] by rn(t) = sgn

(
sin 2n+1πt

)
).

The optimal constants of the Khinchine inequality are known. It is simple to observe 
that the optimal value of Ap is 1 for all p ≥ 2 and Bp = 1 for all p ≤ 2. For real scalars, 
U. Haagerup (see [11]) proved that the optimal constants Ap are (see also [8, page 23])
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, for 1.85 ≈ p0 < p < 2 (1.2)

and
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1
2− 1

p , for 1 ≤ p ≤ p0 ≈ 1.85. (1.3)

The exact definition of p0 is the following: p0 ∈ (1, 2) is the unique real number satisfying
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Note that the Khinchine inequality tells us that
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regardless of the 0 < p, r < ∞. From now on, as usual, c0 denotes Banach space, endowed 
with the sup norm, of the sequences of scalars converging to zero. If U : c0 × c0 → R

is a bilinear form, from the Khinchine inequality (and noting that from (1.3) we have 
A1 = 2−1/2) we have, for all positive integers N ,
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