ELSEVIER

On the fourth power mean of the analogous general Kloosterman sum

Hui Chen, Tianping Zhang*
School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi, PR China

A R T I C L E I N F O

Article history:

Received 15 February 2015
Received in revised form 22 August 2015
Accepted 22 August 2015
Available online 22 October 2015
Communicated by D. Wan

MSC:

11L05
11L07
Keywords:
Kloosterman sum
Fourth power mean
Character

A B S T R A C T

> Text. With the aids of elementary methods, the fourth power mean value of the analogous general Kloosterman sums $C(m, n, k, \chi ; q)$ is studied, and an explicit formula is obtained. It shows that $C(m, n, k, \chi ; q)$ enjoys good mean value distribution properties.

> Video. For a video summary of this paper, please visit https://youtu.be/FZmy08BTpH8.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let $q \geq 3$ be a positive integer. For any integers m, n and k, the general k-th Kloosterman sum $S(m, n, k, \chi ; q)$ is defined as follows:

[^0]$$
S(m, n, k, \chi ; q)=\sum_{a=1}^{q} \chi(a) e\left(\frac{m a^{k}+n \bar{a}^{k}}{q}\right)
$$
where $\sum_{a=1}^{q}$ denotes the summation over all a with $(a, q)=1, a \bar{a} \equiv 1(\bmod q), e(y)=$ $e^{2 \pi i y}$.

This summation is very important, because it becomes the classical general Kloosterman sum

$$
S(m, n, \chi ; q)=\sum_{a=1}^{q} \chi(a) e\left(\frac{m a+n \bar{a}}{q}\right)
$$

if $k \equiv 1(\bmod \phi(q))$. And it is also a generalization of the classical Kloosterman sum

$$
S(m, n ; q)=\sum_{a=1}^{q} e\left(\frac{m a+n \bar{a}}{q}\right) .
$$

Many authors have studied various properties of the above sums. For example, we know the estimate of $S(m, n ; q)$ (see [4] or [2])

$$
|S(m, n ; q)| \leq q^{\frac{1}{2}} d(q)(m, n, q)^{\frac{1}{2}}
$$

where $d(n)$ is the divisor function, (m, n, q) is the greatest common divisor of m, n and q.
For arbitrary integer $q \geq 3$, we don't know how large $|S(m, n, k, \chi ; q)|$ is. However, $S(m, n, k, \chi ; q)$ enjoys good mean value distribution properties. For fixed integer n with $(n, q)=1$, Zhang [9] showed the identity (corrected by [8])

$$
\sum_{\chi \bmod } \sum_{q=1}^{q}|S(m, n, \chi ; q)|^{4}=\phi^{2}(q) q^{2} d(q) \prod_{p^{\alpha} \| q}\left(1-\frac{1}{(\alpha+1)(p-1)}\right),
$$

where $\phi(q)$ is the Euler function, and $\prod_{p^{\alpha} \| q}$ is the product over all prime divisors p of q with $p^{\alpha} \mid q$ and $p^{\alpha+1} \nmid q$.

For the general k-th Kloosterman sum $S(m, n, k, \chi ; q)$, Liu and Zhang [7] proved the identity (the final result was corrected by us through amending a little computing mistake in Lemma 2.1 of [7])

$$
\sum_{\chi \bmod } \sum_{q}^{q}|S(m, n, k, \chi ; q)|^{4}=\phi^{2}(q) q^{2} \prod_{p^{\alpha} \| q}(k, p-1)\left(2+\frac{(k, p-1)(\alpha p-p-\alpha)-2}{p}\right)
$$

under the condition that $(n k, q)=1$. If p is an odd prime, α and k are positive integers, Guo, Geng, and Pan [5] considered the case $(k, q)>1$ and got the identity

https://daneshyari.com/en/article/4593410

Download Persian Version:

https://daneshyari.com/article/4593410

Daneshyari.com

[^0]: This work is supported by the National Natural Science Foundation of China (No. 11201275), and the Fundamental Research Funds for the Central Universities (No. GK201503014).

 * Corresponding author.

 E-mail addresses: chenhui@snnu.edu.cn (H. Chen), tpzhang@snnu.edu.cn (T. Zhang).

