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1. Introduction

Let ¢ > 3 be a positive integer. For any integers m,n and k, the general k-th Kloost-
erman sum S(m,n, k, x; q) is defined as follows:
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where Z denotes the summation over all a with (a,q) = 1, aa = 1(mod q), e(y) =

a=1
627riy.
This summation is very important, because it becomes the classical general Klooster-
man sum
iy ma + na
S(m,n,x;q) =Y, x(a)e (q)
a=1

if k= 1(mod ¢(q)). And it is also a generalization of the classical Kloosterman sum
) ma + na
S(m,n;q) = e (7> .
(m, 3 q) szl p

Many authors have studied various properties of the above sums. For example, we
know the estimate of S(m,n;q) (see [4] or [2])

[N

1S(m,n; q)| < q2d(q)(m,n,q)?,

where d(n) is the divisor function, (m,n, ¢) is the greatest common divisor of m,n and gq.

For arbitrary integer ¢ > 3, we don’t know how large |S(m,n,k, x;q)| is. However,
S(m,n, k,x;q) enjoys good mean value distribution properties. For fixed integer n with
(n,q) = 1, Zhang [9] showed the identity (corrected by [8])

q 1
> Y ISmin i)t = ¢*(@d*dle) [] (1 - (04+1)(p—1)> )

x mod g m=1 p*||q

where ¢(q) is the Euler function, and H is the product over all prime divisors p of ¢
r*llq
with p®|q and p®T! ¢ q.
For the general k-th Kloosterman sum S(m,n, k, x; ¢), Liu and Zhang [7] proved the
identity (the final result was corrected by us through amending a little computing mistake
in Lemma 2.1 of [7])

Y DoIStmnkxa)lt =% (@) [] (ko —1) (2+ (k,p—1)(ap —p—a) —2>

x mod g m=1 p||q p

under the condition that (nk,q) = 1. If p is an odd prime, « and k are positive integers,
Guo, Geng, and Pan [5] considered the case (k,q) > 1 and got the identity
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