Riesz-type criteria and theta transformation analogues

Atul Dixit ${ }^{\mathrm{a}, \mathrm{b}}$, Arindam Roy ${ }^{\mathrm{c}, *}$, Alexandru Zaharescu ${ }^{\mathrm{c}, \mathrm{d}}$
a Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
b Department of Mathematics, Indian Institute of Technology Gandhinagar, Ahmedabad, GJ 382424, India ${ }^{1}$
c Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA
${ }^{\text {d }}$ Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-014700 Bucharest, Romania

A R T I C L E I N F O

Article history:

Received 6 December 2014
Received in revised form 30 August 2015
Accepted 31 August 2015
Available online 22 October 2015
Communicated by David Goss

$M S C$:

primary 11 M 06
secondary $11 \mathrm{M} 26,33 \mathrm{C} 15$

Keywords:

Möbius function
Riemann zeta function
Dirichlet L-function
Riemann Hypothesis
Hypergeometric function
Ramanujan
Hardy
Ferrar

A B S T R A C T

We give character analogues of a generalization of a result due to Ramanujan, Hardy and Littlewood, and provide Riesztype criteria for Riemann Hypotheses for the Riemann zeta function and Dirichlet L-functions. We also provide analogues of the general theta transformation formula and of recent generalizations of the transformation formulas of W.L. Ferrar and G.H. Hardy for real primitive Dirichlet characters.
© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

In 1916, Riesz [16] gave the following equivalent criterion for the Riemann Hypothesis:
Let the function $F(x)$ be defined by

$$
F(x):=\sum_{n=1}^{\infty} \mu(n) \frac{x}{n^{2}} e^{-x / n^{2}}
$$

The estimate $F(x)=O_{\delta}\left(x^{\frac{1}{4}+\delta}\right)$ for all $\delta>0$ is a necessary and sufficient condition for the validity of the Riemann Hypothesis.

The following variant is due to Hardy and Littlewood [11, p. 156, Section 2.5]:
Consider the function

$$
\begin{equation*}
P(y):=\sum_{k=1}^{\infty} \frac{\mu(k)}{k} e^{-y / k^{2}}=\sum_{m=1}^{\infty} \frac{(-y)^{m}}{m!\zeta(2 m+1)} \tag{1.1}
\end{equation*}
$$

Then, the estimate $P(y)=O_{\delta}\left(y^{-\frac{1}{4}+\delta}\right)$ as $y \rightarrow \infty$ for all positive values of δ is equivalent to the Riemann Hypothesis.

Their intuition and motivation came from a beautiful identity in Ramanujan's notebooks [15] (see also [3, p. 468, Entry 37]). The corrected version of this identity was given by Hardy and Littlewood [11, p. 156, Equation 2.516]. Various aspects of this identity have been presented by Berndt [3, p. 470], Bhaskaran [5], Paris and Kaminski [14, p. 143] and Titchmarsh [17, p. 219, Section 9.8]. A one-variable generalization of this identity was obtained in [8]. Motivated by these works and the aforementioned variant of Riesz's criterion, we establish the following theorem. An analogue for Dirichlet L-functions is given in Section 4.

Theorem 1.1. Fix $z \in \mathbb{C}$. Consider the function

$$
\begin{equation*}
\mathcal{P}_{z}(y):=\sum_{n=1}^{\infty} \frac{\mu(n)}{n} e^{-y / n^{2}} \cosh \left(\frac{\sqrt{y} z}{n}\right) \tag{1.2}
\end{equation*}
$$

Then we have the following:
(1) The Riemann Hypothesis implies $\mathcal{P}_{z}(y)=O_{z, \delta}\left(y^{-\frac{1}{4}+\delta}\right)$ as $y \rightarrow \infty$ for all $\delta>0$.
(2) (a) If $z=0$, the estimate $\mathcal{P}_{z}(y)=O_{z, \delta}\left(y^{-\frac{1}{4}+\delta}\right)$ as $y \rightarrow \infty$ for all $\delta>0$ implies the Riemann Hypothesis.
(b) If $z \neq 0$ and $\arg (z) \neq \pm \frac{\pi}{4}$, the estimate $\mathcal{P}_{z}(y)=O_{z, \delta}\left(y^{-\frac{1}{4}+\delta}\right)$ as $y \rightarrow \infty$ for all $\delta>0$ implies that $\zeta(s)$ has at most finitely many non-trivial zeros off the critical line.

https://daneshyari.com/en/article/4593412

Download Persian Version:
https://daneshyari.com/article/4593412

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: adixit@tulane.edu, adixit@iitgn.ac.in (current) (A. Dixit), roy22@illinois.edu (A. Roy), zaharesc@math.uiuc.edu (A. Zaharescu).
 ${ }^{1}$ Current address.

