Note on character sums of Hilbert cubes

Norbert Hegyvári ${ }^{\text {a,b,* }}$
${ }^{\text {a }}$ ELTE TTK, Eötvös University, Institute of Mathematics, H-1117 Pázmány st. 1/c, Budapest, Hungary
${ }^{\text {b }}$ Alfréd Rényi Institute of Mathematics, Hungarian Academy of Science, H-1364
Budapest, P.O.Box 127, Hungary

A R T I C L E I N F O

Article history:

Received 8 April 2015
Received in revised form 21
September 2015
Accepted 21 September 2015
Available online 10 November 2015
Communicated by David Goss

MSC:

primary 11B30, 11L03
secondary 11B75
Keywords:
Hilbert cubes
Character sums

A B S T R A C T

We give bounds for additive and multiplicative character sums of multiplicative and additive Hilbert cubes in prime fields.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In 1892 Hilbert defined an affine d-dimensional cube which is nowadays called the Hilbert cube as follows: let $x_{0}, a_{1}<a_{2}<\cdots<a_{d}$ be any sequence of integers. The Hilbert cube is the set

[^0]\[

$$
\begin{equation*}
H\left(x_{0}, a_{1}, a_{2}, \ldots, a_{d}\right)=\left\{x_{0}+\sum_{1 \leq i \leq d} \varepsilon_{i} a_{i}\right\} \quad \varepsilon_{i} \in\{0,1\} \tag{1}
\end{equation*}
$$

\]

Hilbert cubes play an important role in the proof of Szemerédi's celebrated theorem, and many authors investigated them in different context (see e.g., [11,8,7,5]).

We can define a Hilbert cube of order $r \geq 1 ; r \in \mathbb{N}$ extending (1) by

$$
\begin{equation*}
H_{r}\left(x_{0}, a_{1}, a_{2}, \ldots, a_{d}\right)=\left\{x_{0}+\sum_{1 \leq i \leq d} \varepsilon_{i} a_{i}\right\} \quad \varepsilon_{i} \in\{0,1, \ldots, r\} \tag{2}
\end{equation*}
$$

When $r=1$, we write shortly $H\left(x_{0}, a_{1}, a_{2}, \ldots, a_{d}\right)=H_{1}\left(x_{0}, a_{1}, a_{2}, \ldots, a_{d}\right)$.
We say that $\operatorname{dim}(H):=d$ is the dimension of H and $\left|H\left(x_{0}, a_{1}, a_{2}, \ldots, a_{d}\right)\right|$ is its size. Let $\Delta, 0<\Delta \leq 1$ be a real parameter. We say that a cube $H=: H_{r}\left(x_{0}, a_{1}, a_{2}, \ldots, a_{d}\right)$ is Δ-degenerate, if $\frac{\log _{r+1}|H|}{d}=\Delta$. (Here, and in what follows, $\log _{r+1} x$ means $\log x /$ $\log (r+1)$.) When $\Delta=1$, then $|H|=(r+1)^{d}$. In this case all terms in (2) are pairwise distinct and H is said to be non-degenerate.

We note that considering Hilbert cubes $H=: H_{r}\left(x_{0}, a_{1}, a_{2}, \ldots, a_{d}\right)$ with $\Delta=\Delta(r)$ and $H=: H_{r+1}\left(x_{0}, a_{1}, a_{2}, \ldots, a_{d}\right)$ with $\Delta=\Delta(r+1)$ the function $\Delta(r)$ could have a "jump". A simple example is when $H=H_{1}\left(0,1,2, \ldots, 2^{d-1}\right)$ is non-degenerate, while $H_{2}\left(0,1,2, \ldots, 2^{d-1}\right)=H+H$ and $\left|H_{2}\right| \leq 2\left|H_{1}\right|$.

For an arbitrary set $A \subseteq \mathbb{F}_{p}$ its additive energy is defined by

$$
E_{+}(A):=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in A^{4}: a_{1}+a_{2}=a_{3}+a_{4}\right\}
$$

and its multiplicative energy is defined by

$$
E_{\times}(A):=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in A^{4}: a_{1} \cdot a_{2}=a_{3} \cdot a_{4}\right\}
$$

Let f be an arbitrary function from \mathbb{F}_{p}^{*} to \mathbb{C}. Denote the Fourier transform (with respect to a multiplicative character) by

$$
\widehat{f(u)}:=\sum_{x \in \mathbb{F}_{p}^{*}} f(x) \chi_{u}(x)
$$

where $\chi_{u}(x)$ is the multiplicative (Dirichlet) character; $\chi_{u}(x)=e^{\frac{2 \pi i n d x \cdot u}{p-1}}$ where indx is index of x (or it is sometimes said to be discrete logarithm). When $\chi \neq \chi_{0}$ is not the principal character, then let $\chi(0)=0$. Recall that

$$
\begin{equation*}
\sum_{u \in \mathbb{F}_{p}^{*}}|\widehat{f(u)}|^{2}=(p-1) \sum_{x \in \mathbb{F}_{p}^{*}}|f(x)|^{2} \tag{3}
\end{equation*}
$$

Let $g: \mathbb{F}_{p} \rightarrow \mathbb{C}$ and $x \in \mathbb{F}_{p}$. Denote the Fourier transform (with respect to an additive character) by

https://daneshyari.com/en/article/4593421

Download Persian Version:

https://daneshyari.com/article/4593421

Daneshyari.com

[^0]: * Correspondence to: ELTE TTK, Eötvös University, Institute of Mathematics, H-1117 Pázmány st. 1/c, Budapest, Hungary.

 E-mail address: hegyvari@elte.hu.

