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In this paper we derive a formula for the number of N -free 
elements over a finite field Fq with prescribed trace, in 
particular trace zero, in terms of Gaussian periods. As a 
consequence, we derive several explicit formulae in special 
cases. In addition we show that if all the prime factors of q−1
divide m, then the number of primitive elements in Fqm , with 
prescribed non-zero trace, is uniformly distributed. Finally we 
explore the related number, Pq,m,N (c), of elements in Fqm with 
multiplicative order N and having trace c ∈ Fq.
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1. Introduction

Let q be the power of a prime number p and let Fq be a finite field with q elements. 
In 1992, Hansen and Mullen [10] conjectured that, except for very few exceptions, there 
exist irreducible and primitive polynomials of degree m over Fq with any prescribed 
coefficient respectively. This led to a great deal of work in the area, and both of these 
conjectures have since been resolved in the affirmative (see [18,9] for irreducible polyno-
mials, as well as see the survey in [5] and [7] for primitives).

Particular interest has also been placed in deriving explicit formulas for the exact 
number of irreducible polynomials of degree m over Fq with one or more prescribed 
coefficients (see for example [3,11–13,19] and the survey [5] or Section 3.5 by S.D. Cohen 
in the Handbook of Finite Fields [16]). Here it is worth mentioning the following beautiful 
formula due to Carlitz [3] describing the number of monic irreducible polynomials of 
degree m with a prescribed trace coefficient (the coefficient of xm−1). Let Iq,m(c) denote 
the number of monic irreducible polynomials of degree m over Fq with trace c. Let μ be 
the Möbius function.

Theorem 1.1 (Carlitz, 1952). Let q be a power of a prime p and let m ∈ N. Then for any 
non-zero element c ∈ Fq \ {0}, the number of monic irreducible polynomials of degree m
over Fq and with trace c is given by

Iq,m(c �= 0) = 1
qm

∑
d|m
p�d

μ(d)qm/d = Iq,m − Iq,m(0)
q − 1 ,

where

Iq,m = 1
m

∑
d|m

μ(d)qm/d

is the number of irreducible polynomials of degree m over Fq.

Note that

Iq,m(c) = Iq,m − Iq,m(0)
q − 1 , (1)

is a constant for any c ∈ F∗
q , and so Iq,m(c) is said to be uniformly distributed for c ∈ F∗

q . 
One of the results of this paper concerns an analogy to (1) for primitive polynomials in 
some special cases. We will return to this concept later.

A monic irreducible polynomial of degree m over Fq is called primitive if it has a prim-
itive element of Fqm as one of its roots. There is a correspondence between the primitive 
elements in Fqm and the primitive polynomials of degree m over Fq. In fact the number 
of primitive elements in Fqm is m times the number of primitive polynomials of degree 
m over Fq. Most of the work on primitive polynomials with prescribed coefficients focus 
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