

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Torsion of rational elliptic curves over quartic Galois number fields

Michael Chou

Dept. of Mathematics, Univ. of Connecticut, Storrs, CT 06269, USA

ARTICLE INFO

Article history: Received 18 June 2015 Received in revised form 30 September 2015 Accepted 30 September 2015 Available online 2 November 2015 Communicated by Stephen David Miller

Keywords: Elliptic curves Torsion Quartic fields Galois Modular curves ABSTRACT

Let E be an elliptic curve defined over \mathbb{Q} , and let K be a number field of degree four that is Galois over \mathbb{Q} . The goal of this article is to classify the different isomorphism types of $E(K)_{\text{tors}}$.

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let E be an elliptic curve defined over \mathbb{Q} . Given a number field K, we may consider E as an elliptic curve defined over K and examine the structure of the points of E with coordinates in K, denoted E(K). We have the following fundamental theorem describing the structure of E(K):

E-mail address: michael.chou@uconn.edu.

Theorem 1.1 (Mordell–Weil). Let E be an elliptic curve over a number field K. The group of K-rational points, E(K), is a finitely generated abelian group.

By the fundamental theorem of finitely generated abelian groups it follows that, for any elliptic curve E over K, there exists an integer $r_K > 0$ depending on K such that

$$E(K) \cong E(K)_{\text{tors}} \oplus \mathbb{Z}^{r_K}$$

where $E(K)_{\text{tors}}$ is a finite group. We call r_K the rank of E over K, and we call $E(K)_{\text{tors}}$ the torsion subgroup of the E over K. A natural question is which groups can arise as torsion subgroups of elliptic curves over certain number fields.

In this paper we obtain a classification of the torsion subgroup of elliptic curves with rational coefficients over number fields K that are quartic Galois extensions of \mathbb{Q} . We separate the classification based on the isomorphism type of $\operatorname{Gal}(K/\mathbb{Q})$. If $\operatorname{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/4\mathbb{Z}$ we call K a cyclic quartic extension of \mathbb{Q} , and if $\operatorname{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ we call K a biquadratic extension of \mathbb{Q} .

The main results of this article are as follows:

Theorem 1.2. Let E/\mathbb{Q} be an elliptic curve, and let K be a quartic Galois extension of \mathbb{Q} . Then $E(K)_{tors}$ is isomorphic to one of the following groups:

$$\begin{split} \mathbb{Z}/N_1\mathbb{Z}, & N_1 = 1, \dots, 16, N_1 \neq 11, 14, \\ \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2N_2\mathbb{Z}, & N_2 = 1, \dots, 6, 8, \\ \mathbb{Z}/3\mathbb{Z} \oplus \mathbb{Z}/3N_3\mathbb{Z}, & N_3 = 1, 2, \\ \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/4N_4\mathbb{Z}, & N_4 = 1, 2, \\ \mathbb{Z}/5\mathbb{Z} \oplus \mathbb{Z}/5\mathbb{Z}, \\ \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}. \end{split}$$

Each of these groups, except for $\mathbb{Z}/15\mathbb{Z}$, appears as the torsion structure over some quartic Galois field for infinitely many (non-isomorphic) elliptic curves defined over \mathbb{Q} .

The proof of this theorem is broken up based on the structure of $\operatorname{Gal}(K/\mathbb{Q})$ and so, in fact, we have the following more specialized theorems:

Theorem 1.3. Let E/\mathbb{Q} be an elliptic curve, and let K be a quartic Galois extension with $\operatorname{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}/4\mathbb{Z}$. Then $E(K)_{tors}$ is isomorphic to one of the following groups:

$\mathbb{Z}/N_1\mathbb{Z},$	$N_1 = 1, \dots, 10, 12, 13, 15, 16,$
$\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2N_2\mathbb{Z},$	$N_2 = 1, \dots, 6, 8,$
$\mathbb{Z}/5\mathbb{Z}\oplus\mathbb{Z}/5\mathbb{Z}.$	

Download English Version:

https://daneshyari.com/en/article/4593425

Download Persian Version:

https://daneshyari.com/article/4593425

Daneshyari.com