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Text. In this paper we study the structure of a class of cubic 
tame towers having finite ramification locus. These towers 
were defined by Garcia, Stichtenoth and Thomas in 1997. 
We also prove some extensions of a well known result of 
H. Lenstra Jr. on the infiniteness of the ramification locus 
of these towers.
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1. Introduction

The importance of asymptotically good recursive towers in coding theory and some 
other branches of information theory (see e.g. [7,8]) is well-known. Among the class of 
recursive towers an important one is the class of Kummer type towers, recursively defined 
by equations of the form ym = f(x) for some suitable exponent m and rational function 
f(x) ∈ K(x). A particular case was studied by Garcia, Stichtenoth and Thomas in [3]
where a Kummer tower over a finite field Fq with q ≡ 1 mod m is recursively defined 
by an equation of the form

ym = xdf(x) , (1)

where f(x) is a polynomial of degree m − d such that f(0) �= 0, gcd(d, m) = 1 and its 
leading coefficient is an mth-power in Fq. The authors showed that they always have 
positive splitting rate and assuming the existence of a finite subset S of an algebraic 
closure Fq of Fq such that 0 ∈ S and

{α ∈ Fq : αdf(α) = βm} ⊂ S , (2)

for any β ∈ S, the good asymptotic behavior of such towers can be deduced together 
with a concrete non-trivial lower bound for their limit. Condition (2) imposes serious 
restrictions on the polynomial f in (1) and little is known on the nature of these restric-
tions. H. Lenstra Jr. showed in [5] that in the case of an equation of the form (1) over 
a prime field Fp, there is not such a set S ⊂ Fp satisfying (2). This situation suggests 
that it is an interesting problem to understand how the existence of such a set S shapes 
the structure of equation (1) and what kind of restrictions imposes on the roots and 
coefficients of f when the associated tower is asymptotically good. The aim of this paper 
is to provide an answer to these questions in the cubic case of (1), more precisely in the 
case of good Kummer type towers recursively defined by an equation of the form

y3 = xdf(x) , (3)

over a finite field Fq where q ≡ 1 mod 3, d = 1, 2 and f ∈ Fq[x] is a polynomial such 
that f(0) �= 0 whose leading coefficient is a non-zero cubic power in Fq. It was shown 
in [3] that there are choices of the polynomial f giving good asymptotic behavior and 
even optimal behavior. For instance if f(x) = x2 + x + 1 then equation (3) defines an 
optimal tower over F4 (see [3, Example 2.3]). It is also worth to note that the quadratic 
case (i.e m = 2 in (1)) is already included in the extensive computational search of good 
quadratic tame towers performed in [6].

The organization of the paper is as follows. In Section 2 we give the basic definitions 
and we establish the notation to be used throughout the paper. In Section 3 we give 
an overview of the main ideas, in the general setting of towers of function fields over a 
perfect field K, used to prove the infiniteness of the genus of a tower and we give a key 
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