Sums of exceptional units in residue class rings

J.W. Sander
Institut für Mathematik und Angewandte Informatik, Universität Hildesheim, D-31141 Hildesheim, Germany

A R T I C L E I N F O

Article history:

Received 1 April 2015
Received in revised form 10 July 2015
Accepted 10 July 2015
Available online 2 September 2015
Communicated by David Goss
$M S C$:
11D45
11D57
Keywords:
Residue class rings
Sums of units
Exceptional units

Abstract

Given a commutative ring R with $1 \in R$ and the multiplicative group R^{*} of units, an element $u \in R^{*}$ is called an exceptional unit if $1-u \in R^{*}$, i.e., if there is a $u^{\prime} \in R^{*}$ such that $u+u^{\prime}=1$. We study the case $R=\mathbb{Z}_{n}:=\mathbb{Z} / n \mathbb{Z}$ of residue classes $\bmod n$ and determine the number of representations of an arbitrary element $c \in \mathbb{Z}_{n}$ as the sum of two exceptional units. As a consequence, we obtain the sumset $\mathbb{Z}_{n}^{* *}+\mathbb{Z}_{n}^{* *}$ for all positive integers n, with $\mathbb{Z}_{n}^{* *}$ denoting the set of exceptional units of \mathbb{Z}_{n}. © 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let R be a commutative ring with $1 \in R$, and let R^{*} denote the multiplicative group of units in R. A unit $u \in R^{*}$ is called exceptional if $1-u \in R^{*}$, i.e., if $u-1 \in R^{*}$, or, in other words, if there is a $u^{\prime} \in R^{*}$ such that $u+u^{\prime}=1$. For the sake of brevity (and pointedness), we shall use the coinage exunit for the term exceptional unit.

Exunits were introduced in 1969 by Nagell [6], who studied them to solve certain cubic Diophantine equations. Since then, they proved to be very beneficial when dealing

[^0]with Diophantine equations of various types, e.g., for Thue equations [16] and ThueMahler equations [17] as demonstrated by Tzanakis and DEWEGER, discriminant form equations by Smart [13] and lots of others (for more references see [8]). The key idea is the fact that the solution of many Diophantine equations can be reduced to the solution of a finite number of unit equations of type $a x+b y=1$, where x and y are restricted to units in the ring of integers of some number field. In the case $a=b=1$, this means to search for exunits (cf. [7] for a survey). Fortunately, there exists an algorithm [12] to determine all the exunits within a given number field.

In 1977, Lenstra [4] introduced a method for detecting Euclidean number fields with the aid of exunits. By further development of this method, quite a few formerly unknown Euclidean number fields could be found by Leutbecher and Niklasch [5] and Houriet [3]. Exunits were also studied for their own sake, e.g., the calculation of the number of exunits in a number field of given degree and unit rank [7]. Furthermore, exunits were related to Lehmer's conjecture about Mahler's measure by Silverman $[10,11]$ and to cyclic resultants by Stewart [14,15].

In this paper, we consider exunits in the ring $R=\mathbb{Z}_{n}:=\mathbb{Z} / n \mathbb{Z}$ of residue classes $\bmod n$ for positive integers n. Then $\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n}: \operatorname{gcd}(a, n)=1\right\}$ with

$$
\# \mathbb{Z}_{n}^{*}=\varphi(n)=n \prod_{p \mid n, p \in \mathbb{P}}\left(1-\frac{1}{p}\right)
$$

for Euler's totient function φ, where \mathbb{P} is the set of primes. We denote by

$$
\begin{aligned}
\mathbb{Z}_{n}^{* *} & :=\left\{a \in \mathbb{Z}_{n}^{*}: a-1 \in \mathbb{Z}_{n}^{*}\right\} \\
& =\left\{a \in \mathbb{Z}_{n}: \operatorname{gcd}(a, n)=\operatorname{gcd}(a-1, n)=1\right\}
\end{aligned}
$$

the set of exunits in \mathbb{Z}_{n}. Observe that $\mathbb{Z}_{n}^{* *}$ cannot be a subgroup of the multiplicative group \mathbb{Z}_{n}^{*}, since $1 \notin \mathbb{Z}_{n}^{* *}$. In 2010, it was shown by Harrington and Jones [2, Theorem 3] that

$$
\begin{equation*}
\# \mathbb{Z}_{n}^{* *}=\varphi^{*}(n):=n \prod_{p \mid n, p \in \mathbb{P}}\left(1-\frac{2}{p}\right) \tag{1}
\end{equation*}
$$

which also follows immediately from results of Deaconescu [1] or the author [9]. In particular, (1) implies the obvious fact that $\mathbb{Z}_{n}^{* *}=\emptyset$ if and only if n is even. Observe that φ^{*} is multiplicative, and we apparently have $\varphi^{*}(n)=\varphi(n) \prod_{p \mid n}\left(1-\frac{1}{p-1}\right)$.

It is an easy consequence of the Chinese remainder theorem that the sumset $\mathbb{Z}_{n}^{*}+\mathbb{Z}_{n}^{*}$ satisfies

$$
\mathbb{Z}_{n}^{*}+\mathbb{Z}_{n}^{*}:=\left\{u+v: u, v \in \mathbb{Z}_{n}^{*}\right\}=\left\{\begin{align*}
\mathbb{Z}_{n} & \text { if } n \text { is odd } \tag{2}\\
2 \mathbb{Z}_{n} & \text { if } n \text { is even }
\end{align*}\right.
$$

https://daneshyari.com/en/article/4593439

Download Persian Version:
https://daneshyari.com/article/4593439

Daneshyari.com

[^0]: E-mail address: sander@imai.uni-hildesheim.de.

