

Contents lists available at ScienceDirect

## Journal of Number Theory





# Sums of exceptional units in residue class rings



J.W. Sander

Institut für Mathematik und Angewandte Informatik, Universität Hildesheim, D-31141 Hildesheim, Germany

#### ARTICLE INFO

Article history:
Received 1 April 2015
Received in revised form 10 July 2015
Accepted 10 July 2015
Available online 2 September 2015
Communicated by David Goss

MSC: 11D45 11D57

Keywords: Residue class rings Sums of units Exceptional units

#### ABSTRACT

Given a commutative ring R with  $1 \in R$  and the multiplicative group  $R^*$  of units, an element  $u \in R^*$  is called an *exceptional* unit if  $1-u \in R^*$ , i.e., if there is a  $u' \in R^*$  such that u+u'=1. We study the case  $R=\mathbb{Z}_n:=\mathbb{Z}/n\mathbb{Z}$  of residue classes mod n and determine the number of representations of an arbitrary element  $c \in \mathbb{Z}_n$  as the sum of two exceptional units. As a consequence, we obtain the sumset  $\mathbb{Z}_n^{**} + \mathbb{Z}_n^{**}$  for all positive integers n, with  $\mathbb{Z}_n^{**}$  denoting the set of exceptional units of  $\mathbb{Z}_n$ .

© 2015 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let R be a commutative ring with  $1 \in R$ , and let  $R^*$  denote the multiplicative group of units in R. A unit  $u \in R^*$  is called *exceptional* if  $1 - u \in R^*$ , i.e., if  $u - 1 \in R^*$ , or, in other words, if there is a  $u' \in R^*$  such that u + u' = 1. For the sake of brevity (and pointedness), we shall use the coinage *exunit* for the term *exceptional unit*.

Exunits were introduced in 1969 by NAGELL [6], who studied them to solve certain cubic Diophantine equations. Since then, they proved to be very beneficial when dealing

 $\hbox{\it E-mail address:} {\it sander@imai.uni-hildesheim.de}.$ 

with Diophantine equations of various types, e.g., for Thue equations [16] and Thue–Mahler equations [17] as demonstrated by Tzanakis and DeWeger, discriminant form equations by Smart [13] and lots of others (for more references see [8]). The key idea is the fact that the solution of many Diophantine equations can be reduced to the solution of a finite number of unit equations of type ax + by = 1, where x and y are restricted to units in the ring of integers of some number field. In the case a = b = 1, this means to search for exunits (cf. [7] for a survey). Fortunately, there exists an algorithm [12] to determine all the exunits within a given number field.

In 1977, Lenstra [4] introduced a method for detecting Euclidean number fields with the aid of exunits. By further development of this method, quite a few formerly unknown Euclidean number fields could be found by Leutbecher and Niklasch [5] and Houriet [3]. Exunits were also studied for their own sake, e.g., the calculation of the number of exunits in a number field of given degree and unit rank [7]. Furthermore, exunits were related to Lehmer's conjecture about Mahler's measure by Silverman [10,11] and to cyclic resultants by Stewart [14,15].

In this paper, we consider exunits in the ring  $R = \mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$  of residue classes mod n for positive integers n. Then  $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n : \gcd(a, n) = 1\}$  with

$$\#\mathbb{Z}_n^* = \varphi(n) = n \prod_{p \mid n, \ p \in \mathbb{P}} \left(1 - \frac{1}{p}\right)$$

for Euler's totient function  $\varphi$ , where  $\mathbb{P}$  is the set of primes. We denote by

$$\mathbb{Z}_n^{**} := \{ a \in \mathbb{Z}_n^* : a - 1 \in \mathbb{Z}_n^* \}$$
$$= \{ a \in \mathbb{Z}_n : \gcd(a, n) = \gcd(a - 1, n) = 1 \}$$

the set of exunits in  $\mathbb{Z}_n$ . Observe that  $\mathbb{Z}_n^{**}$  cannot be a subgroup of the multiplicative group  $\mathbb{Z}_n^*$ , since  $1 \notin \mathbb{Z}_n^{**}$ . In 2010, it was shown by HARRINGTON and JONES [2, Theorem 3] that

$$\#\mathbb{Z}_n^{**} = \varphi^*(n) := n \prod_{p|n, \ p \in \mathbb{P}} \left(1 - \frac{2}{p}\right),$$
 (1)

which also follows immediately from results of DEACONESCU [1] or the author [9]. In particular, (1) implies the obvious fact that  $\mathbb{Z}_n^{**} = \emptyset$  if and only if n is even. Observe that  $\varphi^*$  is multiplicative, and we apparently have  $\varphi^*(n) = \varphi(n) \prod_{p|n} (1 - \frac{1}{p-1})$ .

It is an easy consequence of the Chinese remainder theorem that the sumset  $\mathbb{Z}_n^* + \mathbb{Z}_n^*$  satisfies

$$\mathbb{Z}_n^* + \mathbb{Z}_n^* := \{ u + v : \ u, v \in \mathbb{Z}_n^* \} = \begin{cases} \mathbb{Z}_n & \text{if } n \text{ is odd,} \\ 2\mathbb{Z}_n & \text{if } n \text{ is even,} \end{cases}$$
 (2)

### Download English Version:

# https://daneshyari.com/en/article/4593439

Download Persian Version:

https://daneshyari.com/article/4593439

<u>Daneshyari.com</u>