Sum of one prime and two squares of primes in short intervals

Alessandro Languasco ${ }^{\text {a,* }}$, Alessandro Zaccagnini ${ }^{\text {b }}$
${ }^{\text {a }}$ Università di Padova, Dipartimento di Matematica, Via Trieste 63, 35121 Padova, Italy
${ }^{\text {b }}$ Università di Parma, Dipartimento di Matematica e Informatica, Parco Area delle Scienze, 53/a, 43124 Parma, Italy

A R T I C L E I N F O

Article history:

Received 13 October 2014
Received in revised form 29 July 2015
Accepted 29 July 2015
Available online 2 September 2015
Communicated by David Goss

$M S C$:

primary 11P32
secondary 11P55, 11P05
Keywords:
Waring-Goldbach problem
Laplace transforms

A B S T R A C T

Assuming the Riemann Hypothesis we prove that the interval $[N, N+H]$ contains an integer which is a sum of a prime and two squares of primes provided that $H \geq C(\log N)^{4}$, where $C>0$ is an effective constant.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The problem of representing an integer as a sum of a prime and of two prime squares is classical. Letting

$$
\mathcal{A}=\{n \in \mathbb{N}: n \equiv 1 \bmod 2 ; n \not \equiv 2 \bmod 3\}
$$

[^0]it is conjectured that every sufficiently large $n \in \mathcal{A}$ can be represented as $n=p_{1}+p_{2}^{2}+p_{3}^{2}$. Let now N be a large integer. Several results about the cardinality $E(N)$ of the set of integers $n \leq N, n \in \mathcal{A}$ which are not representable as a sum of a prime and two prime squares were proved during the last 75 years; we recall the papers of Hua [3], Schwarz [17], Leung-Liu [11], Wang [18], Wang-Meng [19], Li [12] and Harman-Kumchev [2]. Recently L. Zhao [20] proved that
$$
E(N) \ll N^{1 / 3+\varepsilon}
$$

As a consequence we can say that every integer $n \in[1, N] \cap \mathcal{A}$, with at most $\mathcal{O}\left(N^{1 / 3+\varepsilon}\right)$ exceptions, is the sum of a prime and two prime squares. Letting

$$
\begin{equation*}
r(n)=\sum_{p_{1}+p_{2}^{2}+p_{3}^{2}=n} \log p_{1} \log p_{2} \log p_{3}, \tag{1}
\end{equation*}
$$

in fact L. Zhao also proved that a suitable asymptotic formula for $r(n)$ holds for every $n \in[1, N] \cap \mathcal{A}$, with at most $\mathcal{O}\left(N^{1 / 3+\varepsilon}\right)$ exceptions.

In this paper we study the average behaviour of $r(n)$ over short intervals $[N, N+H]$, $H=o(N)$. Assuming that the Riemann Hypothesis (RH) holds, we prove that a suitable asymptotic formula for such an average of $r(n)$ holds in short intervals with no exceptions.

Theorem 1. Assume the Riemann Hypothesis. We have
$\sum_{n=N+1}^{N+H} r(n)=\frac{\pi}{4} H N+\mathcal{O}\left(H^{1 / 2} N(\log N)^{2}+H N^{3 / 4}(\log N)^{3}+H^{2}(\log N)^{3 / 2}\right) \quad$ as $N \rightarrow \infty$,
uniformly for $\infty\left((\log N)^{4}\right) \leq H \leq o\left(N(\log N)^{-3 / 2}\right)$, where $f=\infty(g)$ means $g=o(f)$.
Letting

$$
r^{*}(n)=\sum_{p_{1}+p_{2}^{2}+p_{3}^{2}=n} 1
$$

a similar asymptotic formula holds for the average of $r^{*}(n)$ too.
In the unconditional case our proof yields a weaker result than Zhao's, namely, the asymptotic formula for the average of $r(n)$ holds just for $H \geq N^{7 / 12+\varepsilon}$; for this reason, here we are only concerned with the conditional one. It is worth remarking that, under the assumption of RH, the formula in Theorem 1 implies that every interval $[N, N+H]$ contains an integer which is a sum of a prime and two prime squares, where $C L^{4} \leq$ $H=o\left(N L^{-3 / 2}\right), C>0$ is a suitable large constant and $L=\log N$. We recall that the analogous results for the binary Goldbach problem are respectively $H \gg N^{c+\varepsilon}$ with $c=21 / 800$, by Baker-Harman-Pintz and Jia, see [15], and $H \gg L^{2}$, under the assumption of RH; see, e.g., [5]. Assuming RH, the expectation in Theorem 1 is the lower

https://daneshyari.com/en/article/4593442

Download Persian Version:
https://daneshyari.com/article/4593442

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: languasco@math.unipd.it (A. Languasco), alessandro.zaccagnini@unipr.it (A. Zaccagnini).

