Ramanujan's Eisenstein series of level 7 and 14

K.R. Vasuki ${ }^{\text {a,* }}$, R.G. Veeresha ${ }^{\text {b }}$
a Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysuru 570 006, India
b Department of Mathematics, Sri Jayachamarajendra College of Engineering, Manasagangotri, Mysuru 570 006, India

A R T I C L E I N F O

Article history:

Received 15 May 2015
Received in revised form 27 July 2015
Accepted 27 July 2015
Available online 2 September 2015
Communicated by David Goss
$M S C$:
11F11
11F20
11M36
33D15

Keywords:

Dedekind eta-function
Theta-functions
Eisenstein series
Bilateral basic hypergeometric series

A B S T R A C T

In this paper, we give an elementary proof of Ramanujan's Eisenstein series of level 7. In the process, we also prove four Eisenstein series of level 14 due to S. Cooper and D. Ye [4].
© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let τ be a complex number satisfying $\operatorname{Im}(\tau)>0$, and let $q=e^{2 \pi i \tau}$. The Dedekind eta-function is defined by

$$
\eta(\tau):=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

Let $P(q)$ denote Ramanujan's Eisenstein series of weight 2, defined by

$$
P(q):=1-24 \sum_{k=1}^{\infty} \frac{k q^{k}}{1-q^{k}} .
$$

For any positive integer n, let P_{n} be defined by

$$
P_{n}:=P\left(q^{n}\right) .
$$

S. Ramanujan [7, p. 254] stated without proof the results which are equivalent to

$$
\begin{align*}
-P_{1}+7 P_{7} & =6\left\{1+\sum_{k=1}^{\infty}\left(\frac{k}{7}\right) \frac{q^{k}}{1-q^{k}}\right\}^{2} \tag{1.1}\\
& =6\left\{\frac{f_{1}^{8}+13 q f_{1}^{4} f_{7}^{4}+49 q^{2} f_{7}^{8}}{f_{1} f_{7}}\right\}^{2 / 3} \tag{1.2}\\
-P_{2}+7 P_{14} & =6\left\{\frac{f_{2}^{5} f_{14}^{5}}{f_{1}^{2} f_{4}^{2} f_{7}^{2} f_{28}^{2}}-2 q \frac{f_{1} f_{4} f_{7} f_{28}}{f_{2} f_{14}}\right\}^{2} \tag{1.3}\\
& =3\left\{\frac{f_{2}^{10} f_{14}^{10}}{f_{1}^{4} f_{4}^{4} f_{7}^{4} f_{28}^{4}}\right\}\left\{1+16 q^{4} \frac{f_{1}^{4} f_{4}^{8} f_{7}^{4} f_{28}^{8}}{f_{2}^{12} f_{14}^{12}}+\frac{f_{1}^{8} f_{4}^{4} f_{7}^{8} f_{28}^{4}}{f_{2}^{12} f_{14}^{12}}\right\} \tag{1.4}
\end{align*}
$$

where $\left(\frac{k}{p}\right)$ is the Legendre symbol and $f_{n}=f\left(-q^{n}\right)=q^{-n / 24} \eta(n \tau)$.
B.C. Berndt [3, pp. 467-473] found proofs of (1.1)-(1.4) by constructing certain differential equations satisfied by the quotients of eta-functions and some Ramanujan's modular equations of the seventh degree. Z.-G. Liu [5,6] proved (1.1) and (1.2) by using complex variable theory of elliptic functions and Ramanujan's modular equations of the seventh degree.

In this paper, we give a quite different proof of (1.1)-(1.4). Our approach is based on the identity (2.3) stated below, which is a particular case of Bailey's ${ }_{6} \psi_{6}$ summation formula. In the process, we also obtain new proofs of four Eisenstein series of level 14 of S. Cooper and D. Ye [4]. In Section 2 of this paper, we recall some definitions, notations and certain theta-function identities of seventh degree, which will be used to prove the main results. In Section 3, we prove four Eisenstein series of level 14 of Cooper and Ye [4]. In Section 4, we establish (1.1)-(1.4).

https://daneshyari.com/en/article/4593443

Download Persian Version:
https://daneshyari.com/article/4593443

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: vasuki_kr@hotmail.com (K.R. Vasuki), veeru.rg@gmail.com (R.G. Veeresha).

