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In this paper, we give an elementary proof of Ramanujan’s 
Eisenstein series of level 7. In the process, we also prove four 
Eisenstein series of level 14 due to S. Cooper and D. Ye [4].
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1. Introduction

Let τ be a complex number satisfying Im(τ) > 0, and let q = e2πiτ . The Dedekind 
eta-function is defined by

η(τ) := q1/24
∞∏

n=1
(1 − qn) .

Let P (q) denote Ramanujan’s Eisenstein series of weight 2, defined by

P (q) := 1 − 24
∞∑
k=1

kqk

1 − qk
.

For any positive integer n, let Pn be defined by

Pn := P (qn) .

S. Ramanujan [7, p. 254] stated without proof the results which are equivalent to
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where 
(
k

p

)
is the Legendre symbol and fn = f(−qn) = q−n/24η(nτ).

B.C. Berndt [3, pp. 467–473] found proofs of (1.1)–(1.4) by constructing certain dif-
ferential equations satisfied by the quotients of eta-functions and some Ramanujan’s 
modular equations of the seventh degree. Z.-G. Liu [5,6] proved (1.1) and (1.2) by using 
complex variable theory of elliptic functions and Ramanujan’s modular equations of the 
seventh degree.

In this paper, we give a quite different proof of (1.1)–(1.4). Our approach is based 
on the identity (2.3) stated below, which is a particular case of Bailey’s 6ψ6 summation 
formula. In the process, we also obtain new proofs of four Eisenstein series of level 14 of 
S. Cooper and D. Ye [4]. In Section 2 of this paper, we recall some definitions, notations 
and certain theta-function identities of seventh degree, which will be used to prove the 
main results. In Section 3, we prove four Eisenstein series of level 14 of Cooper and 
Ye [4]. In Section 4, we establish (1.1)–(1.4).
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