

Contents lists available at ScienceDirect

Journal of Number Theory

Two closed forms for the Bernoulli polynomials

Feng Qi a,b,c,*, Robin J. Chapman d

- ^a Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China
- ^b College of Mathematics, Inner Mongolia University for Nationalities,

Tongliao City, Inner Mongolia Autonomous Region, 028043, China

- ^c Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
- ^d Mathematics Research Institute, University of Exeter, United Kingdom

ARTICLE INFO

Article history: Received 4 June 2015 Received in revised form 18 July 2015 Accepted 18 July 2015 Available online 2 September 2015 Communicated by David Goss

MSC: primary 11B68 secondary 11B73, 26A06, 26A09, 26C05

Keywords: Closed form Bernoulli polynomial Bernoulli number Stirling numbers of the second kind Determinant

ABSTRACT

In the paper, the authors find two closed forms involving the Stirling numbers of the second kind and in terms of a determinant of combinatorial numbers for the Bernoulli polynomials and numbers.

© 2015 Elsevier Inc. All rights reserved.

URLs: https://qifeng618.wordpress.com (F. Qi),

http://empslocal.ex.ac.uk/people/staff/rjchapma/rjc.html (R.J. Chapman).

 $[\]ast$ Corresponding author.

E-mail addresses: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com (F. Qi), R.J.Chapman@exeter.ac.uk, rjc@maths.ex.ac.uk (R.J. Chapman).

1. Introduction

It is common knowledge that the Bernoulli numbers and polynomials B_k and $B_k(u)$ for $k \geq 0$ satisfy $B_k(0) = B_k$ and can be generated respectively by

$$\frac{z}{e^z - 1} = \sum_{k=0}^{\infty} B_k \frac{z^k}{k!} = 1 - \frac{z}{2} + \sum_{k=1}^{\infty} B_{2k} \frac{z^{2k}}{(2k)!}, \quad |z| < 2\pi$$

and

$$\frac{ze^{uz}}{e^z - 1} = \sum_{k=0}^{\infty} B_k(u) \frac{z^k}{k!}, \quad |z| < 2\pi.$$

Because the function $\frac{x}{e^x-1}-1+\frac{x}{2}$ is odd in $x \in \mathbb{R}$, all of the Bernoulli numbers B_{2k+1} for $k \in \mathbb{N}$ equal 0. It is clear that $B_0 = 1$ and $B_1 = -\frac{1}{2}$. The first few Bernoulli numbers B_{2k} are

$$B_2 = \frac{1}{6},$$
 $B_4 = -\frac{1}{30},$ $B_6 = \frac{1}{42},$ $B_8 = -\frac{1}{30},$ $B_{10} = \frac{5}{66},$ $B_{12} = -\frac{691}{2730},$ $B_{14} = \frac{7}{6},$ $B_{16} = -\frac{3617}{510}.$

The first five Bernoulli polynomials are

$$B_0(u) = 1$$
, $B_1(u) = u - \frac{1}{2}$, $B_2(u) = u^2 - u + \frac{1}{6}$,
 $B_3(u) = u^3 - \frac{3}{2}u^2 + \frac{1}{2}u$, $B_4(u) = u^4 - 2u^3 + u^2 - \frac{1}{30}$.

In combinatorics, the Stirling numbers of the second kind S(n,k) for $n \geq k \geq 1$ can be computed and generated by

$$S(n,k) = \frac{1}{k!} \sum_{\ell=1}^{k} (-1)^{k-\ell} \binom{k}{\ell} \ell^n \quad \text{and} \quad \frac{(e^x - 1)^k}{k!} = \sum_{n=k}^{\infty} S(n,k) \frac{x^n}{n!}$$

respectively. See [7, p. 206].

It is easy to see that the generating function of $B_k(u)$ can be reformulated as

$$\frac{ze^{uz}}{e^z - 1} = \left[\frac{e^{(1-u)z} - e^{-uz}}{z}\right]^{-1} = \frac{1}{\int_{-u}^{1-u} e^{zt} dt} = \frac{1}{\int_{0}^{1} e^{z(t-u)} dt}.$$
 (1.1)

This expression will play important role in this paper. For related information on the integral expression (1.1), please refer to [12–14,31,32] and plenty of references cited in the survey and expository article [30].

Download English Version:

https://daneshyari.com/en/article/4593445

Download Persian Version:

https://daneshyari.com/article/4593445

<u>Daneshyari.com</u>