Two closed forms for the Bernoulli polynomials

Feng Qi ${ }^{\text {a,b,c,*, }}$, Robin J. Chapman ${ }^{\mathrm{d}}$
${ }^{\text {a }}$ Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan
Province, 454010, China
b College of Mathematics, Inner Mongolia University for Nationalities,
Tongliao City, Inner Mongolia Autonomous Region, 028043, China
c Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
${ }^{\text {d }}$ Mathematics Research Institute, University of Exeter, United Kingdom

A R T I C L E I N F O

Article history:

Received 4 June 2015
Received in revised form 18 July 2015
Accepted 18 July 2015
Available online 2 September 2015
Communicated by David Goss

$M S C$:

primary 11B68
secondary 11B73, 26A06, 26A09, 26C05

Keywords:
Closed form
Bernoulli polynomial
Bernoulli number
Stirling numbers of the second kind
Determinant

A B S T R A C T

In the paper, the authors find two closed forms involving the Stirling numbers of the second kind and in terms of a determinant of combinatorial numbers for the Bernoulli polynomials and numbers.
© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

It is common knowledge that the Bernoulli numbers and polynomials B_{k} and $B_{k}(u)$ for $k \geq 0$ satisfy $B_{k}(0)=B_{k}$ and can be generated respectively by

$$
\frac{z}{e^{z}-1}=\sum_{k=0}^{\infty} B_{k} \frac{z^{k}}{k!}=1-\frac{z}{2}+\sum_{k=1}^{\infty} B_{2 k} \frac{z^{2 k}}{(2 k)!}, \quad|z|<2 \pi
$$

and

$$
\frac{z e^{u z}}{e^{z}-1}=\sum_{k=0}^{\infty} B_{k}(u) \frac{z^{k}}{k!}, \quad|z|<2 \pi
$$

Because the function $\frac{x}{e^{x}-1}-1+\frac{x}{2}$ is odd in $x \in \mathbb{R}$, all of the Bernoulli numbers $B_{2 k+1}$ for $k \in \mathbb{N}$ equal 0 . It is clear that $B_{0}=1$ and $B_{1}=-\frac{1}{2}$. The first few Bernoulli numbers $B_{2 k}$ are

$$
\begin{aligned}
& B_{2}=\frac{1}{6}, \quad B_{4}=-\frac{1}{30}, \quad B_{6}=\frac{1}{42}, \quad B_{8}=-\frac{1}{30}, \\
& B_{10}=\frac{5}{66}, \quad B_{12}=-\frac{691}{2730}, \quad B_{14}=\frac{7}{6}, \quad B_{16}=-\frac{3617}{510} .
\end{aligned}
$$

The first five Bernoulli polynomials are

$$
\begin{gathered}
B_{0}(u)=1, \quad B_{1}(u)=u-\frac{1}{2}, \quad B_{2}(u)=u^{2}-u+\frac{1}{6} \\
B_{3}(u)=u^{3}-\frac{3}{2} u^{2}+\frac{1}{2} u, \quad B_{4}(u)=u^{4}-2 u^{3}+u^{2}-\frac{1}{30} .
\end{gathered}
$$

In combinatorics, the Stirling numbers of the second kind $S(n, k)$ for $n \geq k \geq 1$ can be computed and generated by

$$
S(n, k)=\frac{1}{k!} \sum_{\ell=1}^{k}(-1)^{k-\ell}\binom{k}{\ell} \ell^{n} \quad \text { and } \quad \frac{\left(e^{x}-1\right)^{k}}{k!}=\sum_{n=k}^{\infty} S(n, k) \frac{x^{n}}{n!}
$$

respectively. See [7, p. 206].
It is easy to see that the generating function of $B_{k}(u)$ can be reformulated as

$$
\begin{equation*}
\frac{z e^{u z}}{e^{z}-1}=\left[\frac{e^{(1-u) z}-e^{-u z}}{z}\right]^{-1}=\frac{1}{\int_{-u}^{1-u} e^{z t} \mathrm{~d} t}=\frac{1}{\int_{0}^{1} e^{z(t-u)} \mathrm{d} t} \tag{1.1}
\end{equation*}
$$

This expression will play important role in this paper. For related information on the integral expression (1.1), please refer to $[12-14,31,32]$ and plenty of references cited in the survey and expository article [30].

https://daneshyari.com/en/article/4593445

Download Persian Version:

https://daneshyari.com/article/4593445

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com (F. Qi), R.J.Chapman@exeter.ac.uk, rjc@maths.ex.ac.uk (R.J. Chapman).

 URLs: https://qifeng618.wordpress.com (F. Qi),
 http://empslocal.ex.ac.uk/people/staff/rjchapma/rjc.html (R.J. Chapman).

