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In the paper, the authors find two closed forms involving the 
Stirling numbers of the second kind and in terms of a determi-
nant of combinatorial numbers for the Bernoulli polynomials 
and numbers.
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1. Introduction

It is common knowledge that the Bernoulli numbers and polynomials Bk and Bk(u)
for k ≥ 0 satisfy Bk(0) = Bk and can be generated respectively by
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(2k)! , |z| < 2π

and
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k! , |z| < 2π.

Because the function x
ex−1 − 1 + x

2 is odd in x ∈ R, all of the Bernoulli numbers B2k+1
for k ∈ N equal 0. It is clear that B0 = 1 and B1 = −1

2 . The first few Bernoulli numbers 
B2k are

B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , B8 = − 1

30 ,

B10 = 5
66 , B12 = − 691

2730 , B14 = 7
6 , B16 = −3617

510 .

The first five Bernoulli polynomials are

B0(u) = 1, B1(u) = u− 1
2 , B2(u) = u2 − u + 1

6 ,

B3(u) = u3 − 3
2u

2 + 1
2u, B4(u) = u4 − 2u3 + u2 − 1

30 .

In combinatorics, the Stirling numbers of the second kind S(n, k) for n ≥ k ≥ 1 can 
be computed and generated by

S(n, k) = 1
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respectively. See [7, p. 206].
It is easy to see that the generating function of Bk(u) can be reformulated as

zeuz

ez − 1 =
[
e(1−u)z − e−uz

z

]−1

= 1∫ 1−u

−u
ezt d t

= 1∫ 1
0 ez(t−u) d t

. (1.1)

This expression will play important role in this paper. For related information on the 
integral expression (1.1), please refer to [12–14,31,32] and plenty of references cited in 
the survey and expository article [30].
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