ELSEVIER

Arithmetic properties of partitions with designated summands

Ernest X.W. Xia
Department of Mathematics, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China

A R T I C L E I N F O

Article history:

Received 30 March 2015
Received in revised form 13 June 2015
Accepted 13 June 2015
Available online 6 August 2015
Communicated by David Goss

MSC:

11 P 83
05A17
Keywords:
Partitions with designated
summands
Congruences
Theta function identities

Abstract

A new class of partitions, partitions with designated summands, was introduced by Andrews, Lewis and Lovejoy. Let $P D(n)$ denote the number of partitions of n with designated summands. Andrews, Lewis and Lovejoy established many congruences modulo 3 and powers of 2 for $P D(n)$ by using the theory of modular forms. In this paper, we prove several infinite families of congruences modulo 9 and 27 for $P D(n)$ by employing the generating functions of $P D(3 n)$ and $P D(3 n+1)$ which were discovered by Chen, Ji, Jin and Shen. For example, we prove that for $n \geq 0$ and $k \geq 1$, $P D\left(2^{18 k-1}(12 n+1)\right) \equiv 0(\bmod 27)$. Furthermore, using some results due to Newman, we find some strange congruences modulo 27 for $P D(n)$. For example, we prove that for $k \geq 0$, $P D\left(13^{9 k}(75 p+2)\right) \equiv 0(\bmod 27)$ and $P D\left(2 \times 13^{9 k+8}\right) \equiv$ $0(\bmod 27)$, where p is a prime and $p \equiv 1(\bmod 12)$.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Andrews, Lewis and Lovejoy [1] investigated the number of partitions with designated summands which are constructed by taking ordinary partitions and tagging exactly one

[^0]part among parts with equal size. For example, there are 15 partitions of 5 with designated summands:
\[

$$
\begin{aligned}
& 5^{\prime}, \quad 4^{\prime}+1^{\prime}, \quad 3^{\prime}+2^{\prime}, \quad 3^{\prime}+1^{\prime}+1, \quad 3^{\prime}+1+1^{\prime}, \quad 2^{\prime}+2+1^{\prime}, \quad 2+2^{\prime}+1^{\prime} \\
& 2^{\prime}+1^{\prime}+1+1, \quad 2^{\prime}+1+1^{\prime}+1, \quad 2^{\prime}+1+1+1^{\prime}, \quad 1^{\prime}+1+1+1+1 \\
& 1+1^{\prime}+1+1+1, \quad 1+1+1^{\prime}+1+1, \quad 1+1+1+1^{\prime}+1, \quad 1+1+1+1+1^{\prime}
\end{aligned}
$$
\]

Let $P D(n)$ denote the number of partitions of n with designated summands. Thus, $P D(5)=15$. As usual, set $P D(0)=1$. Andrews, Lewis and Lovejoy [1] derived the following generating function of $P D(n)$:

$$
\begin{equation*}
\sum_{n=0}^{\infty} P D(n) q^{n}=\frac{f_{6}}{f_{1} f_{2} f_{3}} \tag{1.1}
\end{equation*}
$$

where here and throughout this paper, for any positive integer k, f_{k} is defined by

$$
\begin{equation*}
f_{k}:=\prod_{n=1}^{\infty}\left(1-q^{k n}\right) \tag{1.2}
\end{equation*}
$$

The concept of partitions with designated summands goes back to MacMahon [9]. He considered partitions with designated summands wherein exactly k different magnitudes occur among all the parts, see also Andrews and Rose [2].

Andrews, Lewis and Lovejoy [1] obtained explicit formulas for the generating functions for $P D(2 n)$ and $P D(2 n+1)$. Moreover, they also proved many congruences modulo 3 and powers of 2 for $P D(n)$. In particular, they proved that for $n \geq 0$,

$$
\begin{equation*}
P D(3 n+2) \equiv 0(\bmod 3) . \tag{1.3}
\end{equation*}
$$

Recently, Chen, Ji, Jin and Shen [6] obtained a Ramanujan type identity for the generating function of $P D(3 n+2)$ which implies the congruence of Andrews, Lewis and Lovejoy. They established explicit formulas for $P D(3 n)$ and $P D(3 n+1)$ by using some identities on Ramanujan's cubic continued fraction and cubic theta functions. Furthermore, they also gave a combinatorial interpretation of the congruence of Andrews, Lewis and Lovejoy for $P D(3 n+2)$ by introducing a rank for partitions with designated summands.

In this paper, we prove several infinite families congruences modulo 9 and 27 for $P D(n)$ by employing the generating functions of $P D(3 n)$ and $P D(3 n+2)$ due to Chen, Ji, Jin and Shen [6]. Moreover, we also establish some strange congruences modulo 27 for $P D(n)$ by utilizing some results given by Newman [10].

The main results of this paper can be stated as follows.

https://daneshyari.com/en/article/4593448

Download Persian Version:
https://daneshyari.com/article/4593448

Daneshyari.com

[^0]: E-mail address: Ernestxwxia@163.com.

