On the distribution of squarefree numbers

H.-Q. Liu

Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

A R T I C L E I N F O

Article history:
Received 15 January 2015
Received in revised form 27 July 2015
Accepted 27 July 2015
Available online 3 September 2015
Communicated by David Goss

$M S C$:

11L07
11B83

Keywords:

Squarefree numbers
Riemann hypothesis
Exponential sums

A B S T R A C T
We develop estimates for multiple exponential sums, by which we can improve the result of 1993 on the distribution of squarefree numbers (under RH, as usual).
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let $Q(x)$ be the number of squarefree (2-free) numbers not exceeding x, and x is a sufficiently large positive number. It is elementary to prove that

$$
Q(x)=\sum_{n \leq x}|\mu(n)|=6 \pi^{-2} x+\Delta(x)
$$

where $\Delta(x)$ is the error term, and $\Delta(x)=O\left(x^{1 / 2}\right)$. The problem of estimating $\Delta(x)$ by assuming RH (the Riemann hypothesis of the zeta-function) was studied by Montgomery and Vaughan [MV] using exponential sums, and their result is

$$
\Delta(x)=O\left(x^{9 / 28+\varepsilon}\right)
$$

where ε is a sufficiently small given positive number. Graham [G] improved their result to

$$
\Delta(x)=O\left(x^{8 / 25+\varepsilon}\right)
$$

Baker and Pintz [BPi] utilized the method of Heath-Brown [HB] to get

$$
\Delta(x)=O\left(x^{7 / 22+\varepsilon}\right)
$$

Jia [J] presented a difficult new estimate for double exponential sums, which enabled him to get the improvement

$$
\Delta(x)=O\left(x^{17 / 54+\varepsilon}\right)
$$

Although this important result seems to be the limitation of the current methods of exponential sum methods, a reader familiar with van der Corput's method would still ask the question as whether we can get a new improvement. Recently [BPo] got hitherto best result for the distribution of k-free numbers for $3 \leq k \leq 5$, and [L] got some improvements on results of [BPo] and $[\mathrm{BPi}]$ for $k \geq 5$, but their methods cannot yield an improvement of Jia's result of $[\mathrm{J}]$ for squarefree (2-free) numbers. The purpose of our paper is to improve Jia's result. We are able to present new estimates for multiple exponential sums, from which we get a new result as follows (we only use the decomposition of the Möbius function of [J]).

Theorem 1. Assuming RH, there holds

$$
\Delta(x)=O\left(x^{11 / 35+\varepsilon}\right)
$$

It is notable that we shall derive a result for counting lattice points (see Lemma 6) by using a similar method of proving Lemma 1.1 of [L1], which will play an important role in our arguments. Our Lemma 7 may constitute the novel aspect in the theory of exponential sums, for in its proof we are unable to deal directly with the complicated functions on the exponent.

Notations. $e(\xi)=\exp (2 \pi i \xi)$ for a real number ξ. For two positive numbers t and $T, t \sim T$ means $1<t / T \leq 2$, and $t \approx T$ means that $C \leq t / T \leq C^{\prime}$ for suitable constants $C>0$, $C^{\prime}>0 . C_{i}(i \geq 1)$ denotes a suitable constant. [ξ] is the largest integer not exceeding ξ, $\|\xi\|=\min (\xi-[\xi], 1-\xi+[\xi])$, and $\psi(\xi)=\xi-[\xi]-\frac{1}{2}$.

https://daneshyari.com/en/article/4593451

Download Persian Version:

https://daneshyari.com/article/4593451

Daneshyari.com

