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We develop estimates for multiple exponential sums, by which 
we can improve the result of 1993 on the distribution of 
squarefree numbers (under RH, as usual).
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1. Introduction

Let Q(x) be the number of squarefree (2-free) numbers not exceeding x, and x is a 
sufficiently large positive number. It is elementary to prove that

Q(x) =
∑
n≤x

∣∣μ(n)
∣∣ = 6π−2x + Δ(x),

E-mail address: teutop@163.com.

http://dx.doi.org/10.1016/j.jnt.2015.07.013
0022-314X/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jnt.2015.07.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:teutop@163.com
http://dx.doi.org/10.1016/j.jnt.2015.07.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2015.07.013&domain=pdf


H.-Q. Liu / Journal of Number Theory 159 (2016) 202–222 203

where Δ(x) is the error term, and Δ(x) = O(x1/2). The problem of estimating Δ(x) by 
assuming RH (the Riemann hypothesis of the zeta-function) was studied by Montgomery 
and Vaughan [MV] using exponential sums, and their result is

Δ(x) = O
(
x9/28+ε

)
,

where ε is a sufficiently small given positive number. Graham [G] improved their result 
to

Δ(x) = O
(
x8/25+ε

)
.

Baker and Pintz [BPi] utilized the method of Heath-Brown [HB] to get

Δ(x) = O
(
x7/22+ε

)
.

Jia [J] presented a difficult new estimate for double exponential sums, which enabled 
him to get the improvement

Δ(x) = O
(
x17/54+ε

)
.

Although this important result seems to be the limitation of the current methods of 
exponential sum methods, a reader familiar with van der Corput’s method would still ask 
the question as whether we can get a new improvement. Recently [BPo] got hitherto best 
result for the distribution of k-free numbers for 3 ≤ k ≤ 5, and [L] got some improvements 
on results of [BPo] and [BPi] for k ≥ 5, but their methods cannot yield an improvement of 
Jia’s result of [J] for squarefree (2-free) numbers. The purpose of our paper is to improve 
Jia’s result. We are able to present new estimates for multiple exponential sums, from 
which we get a new result as follows (we only use the decomposition of the Möbius 
function of [J]).

Theorem 1. Assuming RH, there holds

Δ(x) = O
(
x11/35+ε

)
.

It is notable that we shall derive a result for counting lattice points (see Lemma 6) 
by using a similar method of proving Lemma 1.1 of [L1], which will play an important 
role in our arguments. Our Lemma 7 may constitute the novel aspect in the theory of 
exponential sums, for in its proof we are unable to deal directly with the complicated 
functions on the exponent.

Notations. e(ξ) = exp(2πiξ) for a real number ξ. For two positive numbers t and T , t ∼ T

means 1 < t/T ≤ 2, and t ≈ T means that C ≤ t/T ≤ C ′ for suitable constants C > 0, 
C ′ > 0. Ci (i ≥ 1) denotes a suitable constant. [ξ] is the largest integer not exceeding ξ, 
‖ξ‖ = min(ξ − [ξ], 1 − ξ + [ξ]), and ψ(ξ) = ξ − [ξ] − 1

2 .
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