

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Journal of Number Theory

www.elsevier.com/locate/jnt

On number of partitions of an integer into a fixed number of positive integers

Jumber
Thfory

A. Yavuz Oruç

Department of Electrical and Computer Engineering, University of Maryland, Col lege Park, MD 20742, United States

A R T I C L E I N F O A B S T R A C T

Article history: Received 6 April 2015 Received in revised form 9 June 2015 Accepted 10 June 2015 Available online 28 August 2015 Communicated by David Goss

Keywords:

Partition of an integer Partition of an integer into a fixed number of parts Hardy–Ramanujan–Rademacher asymptotic formula Upper bounds

Text. This paper focuses on the number of partitions of a positive integer *n* into *k* positive summands, where *k* is an integer between 1 and *n*. Recently some upper bounds were reported for this number in [\[Merca14\].](#page--1-0) Here, it is shown that these bounds are not as tight as an earlier upper bound proved in $[Andrews76-1]$ for $k \leq 0.42n$. A new upper bound for the number of partitions of *n* into *k* summands is given, and shown to be tighter than the upper bound in [\[Merca14\]](#page--1-0) when *k* is between $O(\frac{\sqrt{n}}{\ln n})$ and $n - O(\frac{\sqrt{n}}{\ln n})$. It is further shown that the new upper bound is also tighter than two other upper bounds previously reported in [\[Andrews76-1\]](#page--1-0) and [\[Colman82\].](#page--1-0) A generalization of this upper bound to number of partitions of *n* into at most *k* summands is also presented.

Video. For a video summary of this paper, please visit [http://youtu.be/Pb6lKB3MnME.](http://youtu.be/Pb6lKB3MnME)

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Partitions of an integer play an important role in the solutions of combinatorial problems and this article is motivated in part by such a problem that arises in counting

<http://dx.doi.org/10.1016/j.jnt.2015.06.023> 0022-314X/© 2015 Elsevier Inc. All rights reserved.

E-mail address: yavuz@eng.umd.edu.

multicast calls between *n* callers and *n* receivers in a switching network [\[Oruc15\].](#page--1-0) In particular, three types of partitions will be of interest in this paper as stated below and we refer the reader to [\[Andrews76-1\]](#page--1-0) for basic concepts in partition theory.

- 1. A partition of *n* is an unordered sum of *n* that comprises up to *n* positive integers. The number of such sums is often denoted by $p(n)$. For example, $p(3) = 3$ as $3 = 3$, $3 = 1 + 2$, and $3 = 1 + 1 + 1$.
- 2. A partition of *n* into exactly *k* parts is an unordered sum of *n* that uses exactly *k* positive integers. The number of such partitions will henceforth be denoted by $p(n, k)$. For example, $p(5, 3) = 2$ as $5 = 1 + 2 + 2$ and $5 = 1 + 1 + 3$ are the only two sums of 5 that can be formed using three positive integers.
- 3. A partition of *n* into at most *k* parts is an unordered sum of *n* that uses at most *k* positive integers. Following the asterisk notation in [\[Colman82\],](#page--1-0) the number of such partitions will henceforth be denoted by $p^*(n, k)$. For example, $p^*(5, 3) = 5$ as $5 = 5$, $5 = 2 + 3$, $5 = 4 + 1$, $5 = 2 + 2 + 1$, and $5 = 3 + 1 + 1$, are the only sums of 5 that can be formed using one, two, or three positive integers.

No exact closed-form expressions are known to compute the values of $p(n)$, $p(n, k)$, and *p*∗(*n, k*). For *p*(*n*), Hardy–Ramanujan–Rademacher formula provides an asymptotic approximation to $p(n)$ [\[Andrews76-2\]:](#page--1-0)

$$
p(n) \approx \frac{1}{4\sqrt{3}n} e^{\pi\sqrt{\frac{2n}{3}}}.
$$
 (1)

Using Remark 1 in [\[Kane06\],](#page--1-0) it can be shown that

$$
0.02556 \le \lim_{n \to \infty} \frac{p(n)}{\frac{1}{4\sqrt{3}n} e^{\pi \sqrt{\frac{2n}{3}}}} \le 37.6393,\tag{2}
$$

while

$$
\lim_{n \to \infty} \left| \frac{1}{4\sqrt{3}n} e^{\pi \sqrt{\frac{2n}{3}}} - p(n) \right| = \infty.
$$
 (3)

In the sequel, we will also need Kane's inequality:

$$
\frac{C_{1,1}^{-}}{n}e^{\pi\sqrt{\frac{2n}{3}}}\leq p(n)\leq \frac{C_{1,1}^{+}}{n}e^{\pi\sqrt{\frac{2n}{3}}},\tag{4}
$$

where $C_{1,1}^-$ is any number less than $\frac{5e^{-2-\frac{3\gamma}{2}}}{8\sqrt{3}\pi^{3/2}}$, $C_{1,1}^+$ is any number greater than $\frac{27}{4}(\frac{e}{\pi})^{3/2}$, and $\gamma = 0.57721...$, is the Euler constant. We will let $C_{1,1}^- = 0.0036$ and $C_{1,1}^+ = 5.44$.

In the remainder of the paper, we analyze the previously reported upper bounds for $p(n, k)$ and present a sharper upper bound for the same. This new bound is used to Download English Version:

<https://daneshyari.com/en/article/4593458>

Download Persian Version:

<https://daneshyari.com/article/4593458>

[Daneshyari.com](https://daneshyari.com)