

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Cyclic components of abelian varieties (mod \wp)

Cristian Virdol

Department of Mathematics, Yonsei University, Republic of Korea

ARTICLE INFO

Article history: Received 17 May 2015 Received in revised form 26 August 2015 Accepted 26 August 2015 Available online 13 October 2015 Communicated by David Goss

MSC: 11G10 11G15

Keywords: Abelian varieties Cyclicity

ABSTRACT

Consider A an abelian variety of dimension r, defined over a number field F. For \wp a finite prime of F, we denote by $\mathbb{F}_{\underline{\wp}}$ the residue field at \wp . If A has good reduction at \wp , let A be the reduction of A at \wp . In this paper, under GRH, we obtain an asymptotic formula for the number of primes \wp of F, with $N_{F/\mathbb{Q}}\wp \leq x$, for which $\overline{A}(\mathbb{F}_{\wp})$ has at most 2r-1 cyclic components.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an abelian variety defined over a number field F, of conductor \mathcal{N} , and of dimension r, where $r \geq 1$ is an integer. Let Σ_F be the set of finite places of F, and for \wp a prime of F, let \mathbb{F}_{\wp} be the residue field at \wp . Let \mathcal{P}_A be the set of primes $\wp \in \Sigma_F$ of good reduction for A (i.e. $(N_{F/\mathbb{Q}}\wp, N_{F/\mathbb{Q}}\mathcal{N}) = 1)$. For $\wp \in \mathcal{P}_A$, we denote by \overline{A} the reduction of A at \wp .

E-mail address: cristian.virdol@gmail.com.

We have that $\bar{A}(\mathbb{F}_{\wp}) \subseteq \bar{A}[m](\bar{\mathbb{F}}_{\wp}) \subseteq (\mathbb{Z}/m\mathbb{Z})^{2r}$ for any positive integer *m* satisfying $|\bar{A}(\mathbb{F}_{\wp})||m$. Hence

$$\bar{A}(\mathbb{F}_{\wp}) \simeq \mathbb{Z}/m_1 \mathbb{Z} \times \mathbb{Z}/m_2 \mathbb{Z} \times \dots \times \mathbb{Z}/m_s \mathbb{Z}, \tag{1.1}$$

where $s \leq 2r$, $m_i \in \mathbb{Z}_{\geq 2}$, and $m_i | m_{i+1}$ for $1 \leq i \leq s-1$. Each $\mathbb{Z}/m_i\mathbb{Z}$ is called a cyclic component of $\overline{A}(\mathbb{F}_{\wp})$. If s < 2r, we say that $\overline{A}(\mathbb{F}_{\wp})$ has at most (2r-1) cyclic components (thus if r = 1 this means that $\overline{A}(\mathbb{F}_{\wp})$ is cyclic). For $x \in \mathbb{R}$, define

$$f_{A,F}(x) = |\{\wp \in \mathcal{P}_A | N_{F/\mathbb{Q}} \wp \le x, \ \bar{A}(\mathbb{F}_{\wp}) \text{ has at most } (2r-1) \text{ cyclic components} \}|.$$

Let F(A[m]) be the field obtained by adjoining to F the m-division points A[m] of A.

In this paper we prove the following result (for the very particular case of abelian varieties over \mathbb{Q} that contain elliptic curves defined also over \mathbb{Q} see the main theorems of [AG], and for the case of elliptic curves see [S,MU,CM,KL]):

Theorem 1.1. Let A be an abelian variety over a number field F of dimension $r \ge 1$. Assume that the Generalized Riemann Hypothesis (GRH) holds for the Dedekind zeta functions of the division fields for A. Then we have

$$f_{A,F}(x) = c_{A,F} \text{li } x + O(x^{5/6} (\log x)^{2/3}),$$

where li $x := \int_2^x \frac{1}{\log t} dt$, and

$$c_{A,F} = \sum_{m=1}^{\infty} \frac{\mu(m)}{[F(A[m]):F]},$$

where $\mu(\cdot)$ is the Mobius function.

2. General abelian varieties

For F a number field, we denote $G_F := \operatorname{Gal}(\overline{F}/F)$. Let A be an abelian variety over F of dimension $r \ge 1$, and of conductor \mathcal{N} . We denote by \mathcal{P}_A the set of primes $\wp \in \Sigma_F$ of good reduction for A (i.e. $(N_{F/\mathbb{Q}}\wp, N_{F/\mathbb{Q}}\mathcal{N}) = 1$). For $m \ge 1$ an integer, let A[m] be the m-division points of A in \overline{F} . Then

$$A[m] \simeq (\mathbb{Z}/m\mathbb{Z})^{2r}.$$

If F(A[m]) is the field obtained by adjoining to F the elements of A[m], then we have a natural injection

$$\Phi_m : \operatorname{Gal}(F(A[m])/F) \hookrightarrow \operatorname{Aut}(A[m]) \simeq \operatorname{GL}_{2r}(\mathbb{Z}/m\mathbb{Z}).$$

Download English Version:

https://daneshyari.com/en/article/4593462

Download Persian Version:

https://daneshyari.com/article/4593462

Daneshyari.com