Cyclic components of abelian varieties $(\bmod \wp)$

Cristian Virdol
Department of Mathematics, Yonsei University, Republic of Korea

A R T I C L E I N F O

Article history:

Received 17 May 2015
Received in revised form 26 August
2015
Accepted 26 August 2015
Available online 13 October 2015
Communicated by David Goss

MSC:

11G10
11G15
Keywords:
Abelian varieties
Cyclicity

Abstract

Consider A an abelian variety of dimension r, defined over a number field F. For \wp a finite prime of F, we denote by \mathbb{F}_{\wp} the residue field at \wp. If A has good reduction at \wp, let \bar{A} be the reduction of A at \wp. In this paper, under GRH, we obtain an asymptotic formula for the number of primes \wp of F, with $N_{F / \mathbb{Q} \wp} \leq x$, for which $\bar{A}\left(\mathbb{F}_{\wp}\right)$ has at most $2 r-1$ cyclic components.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an abelian variety defined over a number field F, of conductor \mathcal{N}, and of dimension r, where $r \geq 1$ is an integer. Let Σ_{F} be the set of finite places of F, and for \wp a prime of F, let \mathbb{F}_{\wp} be the residue field at \wp. Let \mathcal{P}_{A} be the set of primes $\wp \in \Sigma_{F}$ of good reduction for A (i.e. $\left(N_{F / \mathbb{Q} \wp} \wp N_{F / \mathbb{Q}} \mathcal{N}\right)=1$). For $\wp \in \mathcal{P}_{A}$, we denote by \bar{A} the reduction of A at \wp.

[^0]We have that $\bar{A}\left(\mathbb{F}_{\wp}\right) \subseteq \bar{A}[m]\left(\overline{\mathbb{F}}_{\wp}\right) \subseteq(\mathbb{Z} / m \mathbb{Z})^{2 r}$ for any positive integer m satisfying $\left|\bar{A}\left(\mathbb{F}_{\wp}\right)\right| \mid m$. Hence

$$
\begin{equation*}
\bar{A}\left(\mathbb{F}_{\wp}\right) \simeq \mathbb{Z} / m_{1} \mathbb{Z} \times \mathbb{Z} / m_{2} \mathbb{Z} \times \cdots \times \mathbb{Z} / m_{s} \mathbb{Z} \tag{1.1}
\end{equation*}
$$

where $s \leq 2 r, m_{i} \in \mathbb{Z}_{\geq 2}$, and $m_{i} \mid m_{i+1}$ for $1 \leq i \leq s-1$. Each $\mathbb{Z} / m_{i} \mathbb{Z}$ is called a cyclic component of $\bar{A}\left(\mathbb{F}_{\wp}\right)$. If $s<2 r$, we say that $\bar{A}\left(\mathbb{F}_{\wp}\right)$ has at most $(2 r-1)$ cyclic components (thus if $r=1$ this means that $\bar{A}\left(\mathbb{F}_{\wp}\right)$ is cyclic). For $x \in \mathbb{R}$, define

$$
f_{A, F}(x)=\mid\left\{\wp \in \mathcal{P}_{A} \mid N_{F / \mathbb{Q} \wp} \leq x, \bar{A}\left(\mathbb{F}_{\wp}\right) \text { has at most }(2 r-1) \text { cyclic components }\right\} \mid .
$$

Let $F(A[m])$ be the field obtained by adjoining to F the m-division points $A[m]$ of A.
In this paper we prove the following result (for the very particular case of abelian varieties over \mathbb{Q} that contain elliptic curves defined also over \mathbb{Q} see the main theorems of $[A G]$, and for the case of elliptic curves see [S,MU,CM,KL]):

Theorem 1.1. Let A be an abelian variety over a number field F of dimension $r \geq 1$. Assume that the Generalized Riemann Hypothesis (GRH) holds for the Dedekind zeta functions of the division fields for A. Then we have

$$
f_{A, F}(x)=c_{A, F} \text { li } x+O\left(x^{5 / 6}(\log x)^{2 / 3}\right)
$$

where li $x:=\int_{2}^{x} \frac{1}{\log t} d t$, and

$$
c_{A, F}=\sum_{m=1}^{\infty} \frac{\mu(m)}{[F(A[m]): F]},
$$

where $\mu(\cdot)$ is the Mobius function.

2. General abelian varieties

For F a number field, we denote $G_{F}:=\operatorname{Gal}(\bar{F} / F)$. Let A be an abelian variety over F of dimension $r \geq 1$, and of conductor \mathcal{N}. We denote by \mathcal{P}_{A} the set of primes $\wp \in \Sigma_{F}$ of good reduction for $A\left(\right.$ i.e. $\left.\left(N_{F / \mathbb{Q} \wp}, N_{F / \mathbb{Q}} \mathcal{N}\right)=1\right)$. For $m \geq 1$ an integer, let $A[m]$ be the m-division points of A in \bar{F}. Then

$$
A[m] \simeq(\mathbb{Z} / m \mathbb{Z})^{2 r}
$$

If $F(A[m])$ is the field obtained by adjoining to F the elements of $A[m]$, then we have a natural injection

$$
\Phi_{m}: \operatorname{Gal}(F(A[m]) / F) \hookrightarrow \operatorname{Aut}(A[m]) \simeq \mathrm{GL}_{2 r}(\mathbb{Z} / m \mathbb{Z})
$$

https://daneshyari.com/en/article/4593462

Download Persian Version:
https://daneshyari.com/article/4593462

Daneshyari.com

[^0]: E-mail address: cristian.virdol@gmail.com.

