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Text. A sum-dominant set is a finite set A of integers 
such that |A + A| > |A − A|. As a typical pair of elements 
contributes one sum and two differences, we expect sum-
dominant sets to be rare in some sense. In 2006, however, 
Martin and O’Bryant showed that the proportion of sum-
dominant subsets of {0, . . . , n} is bounded below by a positive 
constant as n → ∞. Hegarty then extended their work and 
showed that for any prescribed s, d ∈ N0, the proportion 
ρs,dn of subsets of {0, . . . , n} that are missing exactly s sums 
in {0, . . . , 2n} and exactly 2d differences in {−n, . . . , n} also 
remains positive in the limit.
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More sum than difference sets
Convex sets

We consider the following question: are such sets, character-
ized by their sums and differences, similarly ubiquitous in 
higher dimensional spaces? We generalize the integers in a 
growing interval to the lattice points in a dilating polytope. 
Specifically, let P be a polytope in RD with vertices in ZD , 
and let ρs,dn now denote the proportion of subsets of L(nP )
that are missing exactly s sums in L(nP ) +L(nP ) and exactly 
2d differences in L(nP ) −L(nP ). As it turns out, the geometry 
of P has a significant effect on the limiting behavior of ρs,dn . 
We define a geometric characteristic of polytopes called local 
point symmetry, and show that ρs,dn is bounded below by a 
positive constant as n → ∞ if and only if P is locally point 
symmetric. We further show that the proportion of subsets 
in L(nP ) that are missing exactly s sums and at least 2d
differences remains positive in the limit, independent of the 
geometry of P . A direct corollary of these results is that if 
P is additionally point symmetric, the proportion of sum-
dominant subsets of L(nP ) also remains positive in the limit.

Video. For a video summary of this paper, please visit 
http://youtu.be/2M8Qg0E0RAc.
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1. Introduction

Given a finite set A ⊂ Z, we define the sumset A +A and the difference set A −A by

A + A = {a1 + a2 : a1, a2 ∈ A},
A−A = {a1 − a2 : a1, a2 ∈ A}. (1.1)

It is natural to compare the sizes of A +A and A −A as we vary A over a family of sets. As 
addition is commutative while subtraction is not, a pair of distinct elements a1, a2 ∈ A

generates two differences a1−a2 and a2−a1 but only one sum a1+a2. We thus expect that 
most of the time, the size of the difference set is greater than that of the sumset—that 
is, we expect most sets A to be difference-dominant. It is possible, however, to construct 
sets whose sumsets have more elements than their difference sets. Such sets are called 
sum-dominant or More Sums Than Differences (MSTD) sets. The first example of an 
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