

Contents lists available at ScienceDirect

Journal of Number Theory

Bounds on the number of Diophantine quintuples

Tim Trudgian ¹

 $\label{lem:matter:mat$

ARTICLE INFO

Article history:
Received 19 January 2015
Received in revised form 20 May 2015
Accepted 26 May 2015
Available online 2 July 2015
Communicated by David Goss

Keywords:
Diophantine equations
Diophantine quintuples
Pell equations
Linear independence of logarithms

ABSTRACT

We consider Diophantine quintuples $\{a, b, c, d, e\}$. These are sets of distinct positive integers, the product of any two elements of which is one less than a perfect square. It is conjectured that there are no Diophantine quintuples; we improve on current estimates to show that there are at most $2.3 \cdot 10^{29}$ Diophantine quintuples.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Consider the set $\{1, 3, 8, 120\}$. This has the property that the product of any two of its elements is one less than a square. Define a Diophantine m-tuple as a set of m integers $\{a_1, \ldots, a_m\}$ with $a_1 < a_2 < \ldots < a_m$, such that $a_i a_j + 1$ is a perfect square for all $1 \le i < j \le m$. Throughout the rest of this article we simply refer to m-tuples, and not to Diophantine m-tuples.

One may extend any triple $\{a, b, c\}$ to a quadruple $\{a, b, c, d_+\}$ where

$$d_{+} = a + b + c + 2abc + 2rst, \quad r = \sqrt{ab+1}, \quad s = \sqrt{ac+1}, \quad t = \sqrt{bc+1},$$
 (1)

E-mail address: timothy.trudgian@anu.edu.au.

¹ Supported by Australian Research Council DECRA Grant DE120100173.

Table 1
Bounds on the number of quintuples.

	Upper bound on number of quintuples
Dujella [10]	10^{1930}
Fujita [16]	10^{276}
Filipin and Fujita [12]	10^{96}
Elsholtz, Filipin and Fujita [11]	$6.8 \cdot 10^{32}$
Cipu [6]	10^{31}
Trudgian	$2.3 \cdot 10^{29}$

by appealing to a result by Arkin, Hoggatt and Straus [2]. Indeed, they conjectured that *every* such quadruple is formed in this way. We record this in

Conjecture 1 (Arkin, Hoggatt and Straus). If $\{a, b, c, d\}$ is a quadruple then $d = d_+$.

Note that any possible quintuple $\{a, b, c, d, e\}$ contains, inter alia the quadruples $\{a, b, c, d\}$ and $\{a, b, c, e\}$. If Conjecture 1 is true then $d_+ = d = e$, whence d and e are not distinct. Therefore Conjecture 1 implies

Conjecture 2. There are no quintuples.

Dujella [10] proved that there are finitely many quintuples. Subsequent research, summarised in Table 1, has reduced the bound on the total number of quintuples. We prove

Theorem 1. There are at most $2.3 \cdot 10^{29}$ quintuples.

Wu and He [27] did not estimate the number of quintuples, though bounds for the second largest element d were considered in some special cases – see Section 3 for more details. We also note that the proof of Proposition 4.2 in [16] appears to be flawed, and hence the estimate in [11] is too small. We repair the proof, and improve on it slightly, in Section 4.

The layout of the paper is as follows. In Section 2 we define several classes of quintuples and identify doubles and triples that cannot be extended to quintuples. In Sections 3 and 4 we bound the size of the second largest element of a quintuple. Essential to Dujella's argument, and to all subsequent improvements, is a result by Matveev [23] on linear forms of logarithms. We make use of a result by Aleksentsev [1] which, for our purposes, is slightly better. In several places we optimise the argument given by Fujita [16].

In Section 5 we estimate some sums from elementary number theory. In Section 6 we estimate the total number of quintuples, and we prove Theorem 1. In Section 7 we define D(-1)-quadruples and, using one of our ancillary results, make a small improvement on the estimated number of these. In Section 8 we conclude with some ideas on possible future improvements.

Download English Version:

https://daneshyari.com/en/article/4593480

Download Persian Version:

https://daneshyari.com/article/4593480

<u>Daneshyari.com</u>