

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Distribution of integral lattice points in an ellipsoid with a diophantine center

Jiyoung Han^a, Hyunsuk Kang^b, Yong-Cheol Kim^{c,d,*}, Seonhee Lim^a

^a Department of Mathematics, Seoul National University, Seoul 151-747, Republic of Korea

^b Division of Arts and Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea

^c Department of Mathematics Education, Korea University, Seoul 136-701, Republic of Korea

^d Department of Mathematics, Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea

ARTICLE INFO

Article history: Received 26 March 2014 Received in revised form 2 December 2014 Accepted 2 May 2015 Available online 8 July 2015 Communicated by Ph. Michel

MSC: 11P21 11L07 37C40 42B05

Keywords: Distribution of integral lattice points Diophantine center Schrödinger and Shale–Weil representation ABSTRACT

We evaluate the mean square limit of exponential sums related to a rational ellipsoid, extending a work of Marklof. Moreover, as a result of it, we study the asymptotic values of the normalized deviations of the number of lattice points inside a rational ellipsoid and inside a rational thin ellipsoidal shell. © 2015 Elsevier Inc. All rights reserved.

 $\ast\,$ Corresponding author.

E-mail addresses: madwink0@snu.ac.kr (J. Han), kang@gist.ac.kr (H. Kang), ychkim@korea.ac.kr (Y.-C. Kim), slim@snu.ac.kr (S. Lim).

 $\label{eq:http://dx.doi.org/10.1016/j.jnt.2015.05.014} 0022-314 X/ © 2015 Elsevier Inc. All rights reserved.$

Jacobi's theta sums Equidistribution of closed orbits

1. Introduction

Let $\mathfrak{S}_n^+(\mathbb{Q})$ be the family of all positive definite and symmetric $n \times n$ matrices with rational components. Given $\mathbf{M} \in \mathfrak{S}_n^+(\mathbb{Q})$, we consider the quadratic form $Q_{\mathbf{M}}$ defined by $Q_{\mathbf{M}}(\mathbf{x}) = \langle \mathbf{M}\mathbf{x}, \mathbf{x} \rangle$ for $\mathbf{x} \in \mathbb{R}^n$ and the corresponding ellipsoid

$$E_R^{\mathrm{M}}(\boldsymbol{\alpha}) = \{ \mathbf{x} \in \mathbb{R}^n : Q_{\mathrm{M}}(\mathbf{x} - \boldsymbol{\alpha}) \le R^2 \}$$

centered at a vector $\boldsymbol{\alpha} \in \mathbb{R}^n$, and we write $E_R^{\mathrm{M}} = E_R^{\mathrm{M}}(\mathbf{0})$ for R > 0.

Our interests are focused on the distribution of integral lattice points inside E_R^M as R tends to infinity. In place of the ellipsoid centered at the origin, we consider the ellipsoid with a diophantine center of type κ as defined below.

Definition 1.1. A vector $\boldsymbol{\alpha} \in \mathbb{R}^n$ is said to be *of diophantine type* κ , if there exists a constant $c_0 > 0$ such that $|\boldsymbol{\alpha} - \frac{\mathbf{m}}{q}| > \frac{c_0}{q^{\kappa}}$ for all $\mathbf{m} \in \mathbb{Z}^n$ and $q \in \mathbb{N}$.

The smallest possible value of κ is 1 + 1/k in the above definition. In this case, α is called *badly approximable* (see [8]).

We consider the counting function $N_{\rm M}$ in the ellipsoid with a diophantine center of type κ introduced in [1]. For convenience, we assume that ${\rm M} \in \mathfrak{S}_n^+(\mathbb{Z})$ for now and we shall see that this can be extended to the case ${\rm M} \in \mathfrak{S}_n^+(\mathbb{Q})$ as noted in Remark 1.6. Let $\mathbb{1}_B$ be the characteristic function of the unit open ball $B = B_1$ in \mathbb{R}^n and $\mathbb{1}_{E^{\rm M}}$ be the characteristic function of the ellipsoid $E^{\rm M} = E_1^{\rm M}$ corresponding to ${\rm M} \in \mathfrak{S}_n^+(\mathbb{Z})$. For t > 0, we denote by $N_{\rm M}(t) := \sharp (\mathbb{Z}^n \cap E_t^{\rm M}(\boldsymbol{\alpha}))$ the number of lattice points inside the ellipsoid $E_t^{\rm M}(\boldsymbol{\alpha})$ centered at a diophantine vector $\boldsymbol{\alpha} \in \mathbb{R}^n$; that is to say,

$$N_{\mathbf{M}}(t) = \sum_{\mathbf{m} \in \mathbb{Z}^n} \mathbb{1}_{E^{\mathbf{M}}} \left(\frac{\mathbf{m} - \boldsymbol{\alpha}}{t} \right).$$

In this paper, we investigate the asymptotics of the following deviations: from their asymptotics (see (2.3) and (2.4)), we can consider the normalized deviation $F_{\rm M}(t)$ of $N_{\rm M}(t)$ defined by

$$F_{\rm M}(t) := \frac{N_{\rm M}(t) - |E^{\rm M}| t^n}{t^{(n-1)/2}} \quad \text{as } t \to \infty$$
(1.1)

and the normalized deviation $S_{\rm M}(t,\eta)$ of the number of lattice points inside the spherical shell between the elliptic spheres of radii $t + \eta$ and t given by

$$S_{\rm M}(t,\eta) := \frac{N_{\rm M}(t+\eta) - N_{\rm M}(t) - |E^{\rm M}|((t+\eta)^n - t^n)}{\sqrt{\eta} t^{(n-1)/2}}$$
(1.2)

as $t \to \infty$ and $\eta \to 0$, where $|E^{\mathcal{M}}|$ denotes the volume of the ellipsoid $E^{\mathcal{M}}$.

Download English Version:

https://daneshyari.com/en/article/4593491

Download Persian Version:

https://daneshyari.com/article/4593491

Daneshyari.com