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Define the numbers Rn and Wn by
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We prove that, for any positive integer n and odd prime p, 
there hold

n−1∑
k=0

(2k + 1)R2
k ≡ 0 (mod n),

p−1∑
k=0

(2k + 1)R2
k ≡ 4p(−1)

p−1
2 − p2 (mod p3),

9
n−1∑
k=0

(2k + 1)W 2
k ≡ 0 (mod n),

p−1∑
k=0

(2k + 1)W 2
k ≡ 12p(−1)

p−1
2 − 17p2 (mod p3), if p > 3.
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The first two congruences were originally conjectured by 
Z.-W. Sun.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

It is easy to see that 
(2n
n

) 1
2n−1 is always an integer for n � 0. Recently, Z.-W. Sun [7]

introduced the following numbers

Rn =
n∑

k=0

(
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)(
2k
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)
1

2k − 1 ,

and proved some interesting arithmetic properties of these numbers. For example, Sun 
[7] proved that, if p is a prime of the form 4k+1, then R p−1

2
≡ p − (−1) p−1

4 2x (mod p2), 
where p = x2 + y2 with x ≡ 1 (mod 4).

The first aim of this paper is to prove the following result, which was originally 
conjectured by Z.-W. Sun (see [7, Conjecture 5.4]).

Theorem 1.1. Let n be a positive integer and p an odd prime. Then

n−1∑
k=0

(2k + 1)R2
k ≡ 0 (mod n), (1.1)
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k=0
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Since 
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) 3
2n−3 =
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) 8
2n−3 , we see that 
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2n−3 is always an integer. 

Let

Wn =
n∑

k=0
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2k − 3 .

The second aim of this paper is to prove the following result.

Theorem 1.2. Let n be a positive integer and let p > 3 be a prime. Then

9
n−1∑
k=0

(2k + 1)W 2
k ≡ 0 (mod n), (1.3)
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