Decomposing Jacobians of curves over finite fields in the absence of algebraic structure

Omran Ahmadi ${ }^{\text {a,*,1 }}$, Gary McGuire ${ }^{\mathrm{b}, 2}$, Antonio Rojas-León ${ }^{\mathrm{c}, 3}$
${ }^{\text {a }}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
b School of Mathematical Sciences, University College, Dublin, Ireland
c Department of Algebra, University of Seville, Spain

A R T I C L E I N F O

Article history:

Received 17 November 2014
Accepted 18 April 2015
Available online 9 June 2015
Communicated by D. Wan

MSC:

14H45
11M38

Keywords:

Curve
Jacobian
Supersingular
Finite field
L-polynomial

Abstract

We consider the issue of when the L-polynomial of one curve over \mathbb{F}_{q} divides the L-polynomial of another curve. We prove a theorem which shows that divisibility follows from a hypothesis that two curves have the same number of points over infinitely many extensions of a certain type, and one other assumption. We also present an application to a family of curves arising from a conjecture about exponential sums. We make our own conjecture about L-polynomials, and prove that this is equivalent to the exponential sums conjecture.

© 2015 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let $q=p^{a}$ where p is a prime, and let \mathbb{F}_{q} denote the finite field with q elements. Let $C=C\left(\mathbb{F}_{q}\right)$ be a projective smooth absolutely irreducible curve of genus g defined over \mathbb{F}_{q}. For any $n \geq 1$ let $C\left(\mathbb{F}_{q^{n}}\right)=C\left(\mathbb{F}_{q}\right) \otimes_{\mathbb{F}_{q}} \mathbb{F}_{q^{n}}$ be the set of $\mathbb{F}_{q^{n} \text {-rational points of } C \text {, }}$ and let $\# C\left(\mathbb{F}_{q^{n}}\right)$ be the cardinality of $C\left(\mathbb{F}_{q^{n}}\right)$. Similarly, if $\overline{\mathbb{F}_{q}}$ denotes a fixed algebraic closure of \mathbb{F}_{q}, let $C\left(\overline{\mathbb{F}_{q}}\right)=C\left(\mathbb{F}_{q}\right) \otimes_{\mathbb{F}_{q}} \overline{\mathbb{F}_{q}}$.

The divisor group of C is the free abelian group generated by the points of $C\left(\overline{\mathbb{F}_{q}}\right)$. Thus, a divisor is a formal sum $\sum n_{P} P$ over all $P \in C\left(\overline{\mathbb{F}_{q}}\right)$, where all but finitely many n_{P} are 0 . The degree of a divisor is $\sum n_{P}$. The divisor of a function in the function field $\overline{\mathbb{F}_{q}}(C)$ must have degree 0 , and is called a principal divisor. The quotient of the subgroup of degree 0 divisors by the principal divisors is denoted $\operatorname{Pic}^{0}\left(C\left(\overline{\mathbb{F}_{q}}\right)\right.$), and is canonically isomorphic to the Jacobian of $C, \operatorname{Jac}(C)\left(\overline{\mathbb{F}_{q}}\right)$, after a point at infinity is chosen. The Galois group $\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{q}\right)$ acts on divisors and divisor classes, and we define $\operatorname{Jac}(C)=\operatorname{Jac}(C)\left(\mathbb{F}_{q}\right)=\operatorname{Pic}^{0}(C)=\operatorname{Pic}{ }^{0}\left(C\left(\mathbb{F}_{q}\right)\right)$ to be the divisor classes that are fixed by every element of $\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{q}\right)$. The Jacobian $\operatorname{Jac}(C)$ is an abelian variety of dimension g defined over \mathbb{F}_{q}.

The Frobenius map $\pi: x \mapsto x^{q}$ on $\overline{\mathbb{F}_{q}}$ induces a Frobenius map on $C\left(\overline{\mathbb{F}_{q}}\right)$. The elements of $C\left(\mathbb{F}_{q^{n}}\right)$ are the fixed points of π^{n}. The Frobenius morphism π induces a map on divisor classes, and hence on the Jacobian, and hence a Frobenius endomorphism on the ℓ-adic Tate module $V_{\ell}(\operatorname{Jac}(C))$. Let $P_{C}(t)$ denote the characteristic polynomial of the Frobenius endomorphism, which is known to have integer coefficients. An abelian variety defined over \mathbb{F}_{q} is called \mathbb{F}_{q}-simple if it is not isogenous over \mathbb{F}_{q} to a product of abelian varieties of lower dimensions. An abelian variety is absolutely simple if it is $\overline{\mathbb{F}_{q}}$-simple. If $\operatorname{Jac}(C)$ is \mathbb{F}_{q}-simple then it can be shown that $P_{C}(X)=h(X)^{e}$ where $h(X) \in \mathbb{Z}[X]$ is irreducible over \mathbb{Z} and $e \geq 1$. We refer the reader to Waterhouse [17] for these and further details about abelian varieties.

Given an abelian variety A of dimension g defined over \mathbb{F}_{q}, for a prime $\ell \neq p$ one defines $A[\ell]$ as the group of points on A (with values in an algebraic closure \bar{k}) of order dividing ℓ. Like in the classical case over \mathbb{C} it can be shown that $A[\ell]$ is a $2 g$-dimensional $\mathbb{Z} / \ell \mathbb{Z}$-vector space. Things are different when $\ell=p$. The p-rank of A is defined by

$$
r_{p}(A)=\operatorname{dim}_{\mathbb{F}_{p}} A[p](\bar{k})
$$

where $A[p](\bar{k})$ is the subgroup of p-torsion points over the algebraic closure. The p-rank can take any value between 0 and $g=\operatorname{dim}(A)$. When $r_{p}(A)=g$ we say that A is ordinary. The number $r_{p}(A)$ is invariant under isogenies over k, and satisfies $r_{p}\left(A_{1} \times A_{2}\right)=$ $r_{p}\left(A_{1}\right)+r_{p}\left(A_{2}\right)$.

The zeta function of C is defined by

$$
Z_{C}(t)=\exp \left(\sum_{n \geq 1} \# C\left(\mathbb{F}_{q^{n}}\right) \frac{t^{n}}{n}\right)=\exp \left(\sum_{n \geq 1} \# F i x\left(\pi^{n}\right) \frac{t^{n}}{n}\right)
$$

https://daneshyari.com/en/article/4593519

Download Persian Version:

https://daneshyari.com/article/4593519

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: oahmadid@ipm.ir (O. Ahmadi), gary.mcguire@ucd.ie (G. McGuire), arojas@us.es (A. Rojas-León).
 ${ }^{1}$ Research supported by IPM.
 ${ }^{2}$ Research supported by the Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006.
 ${ }^{3}$ Partially supported by MTM2010-19298 (Min. Ciencia e Innovación) and FEDER.

