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1. Introduction

Let ¢ = p* where p is a prime, and let F,; denote the finite field with ¢ elements. Let
C = C(F,) be a projective smooth absolutely irreducible curve of genus g defined over
Fy. For any n > 1 let C(F¢n) = C(F,) ®r, Fgn be the set of Fyn-rational points of C,
and let #C(F,«) be the cardinality of C(F,»). Similarly, if F, denotes a fixed algebraic
closure of Fy, let C(F,) = C(F,) @, F,.

The divisor group of C is the free abelian group generated by the points of C (IF_q)
Thus, a divisor is a formal sum > npP over all P € C(F,), where all but finitely many
np are 0. The degree of a divisor is Y np. The divisor of a function in the function
field IE‘_q(C) must have degree 0, and is called a principal divisor. The quotient of the
subgroup of degree 0 divisors by the principal divisors is denoted Pic’(C(F,)), and is
canonically isomorphic to the Jacobian of C, Jac(C)(F,), after a point at infinity is
chosen. The Galois group Gal(F,/F,) acts on divisors and divisor classes, and we define
Jac(C) = Jac(C)(F,) = Pic’(C) = Pic’(C(F,)) to be the divisor classes that are fixed
by every element of Gal(F,/F,). The Jacobian Jac(C) is an abelian variety of dimension
g defined over F,.

The Frobenius map 7 : 2 — 2 on FF, induces a Frobenius map on C(F,). The elements
of C(IF4n) are the fixed points of 7. The Frobenius morphism 7 induces a map on divisor
classes, and hence on the Jacobian, and hence a Frobenius endomorphism on the ¢-adic
Tate module V;(Jac(C)). Let Po(t) denote the characteristic polynomial of the Frobenius
endomorphism, which is known to have integer coefficients. An abelian variety defined
over I, is called F,-simple if it is not isogenous over F, to a product of abelian varieties
of lower dimensions. An abelian variety is absolutely simple if it is E—simple. If Jac(C)
is F;-simple then it can be shown that Po(X) = h(X)® where h(X) € Z[X] is irreducible
over Z and e > 1. We refer the reader to Waterhouse [17] for these and further details
about abelian varieties.

Given an abelian variety A of dimension ¢ defined over F,, for a prime ¢ # p one
defines A[/] as the group of points on A (with values in an algebraic closure k) of order
dividing ¢. Like in the classical case over C it can be shown that A[{] is a 2g-dimensional
Z/¢Z-vector space. Things are different when £ = p. The p-rank of A is defined by

rp(A) = dimg, Alp)(k),

where A[p](k) is the subgroup of p-torsion points over the algebraic closure. The p-rank
can take any value between 0 and g = dim(A). When r,(A) = g we say that A is ordinary.
The number r,(A) is invariant under isogenies over k, and satisfies 7,(A4; X Ag) =
Tp(A1) + 1p(A2).

The zeta function of C' is defined by

n

Zo(t) = exp(Z #C(Fqn)%) — eap (Z #Fix(w”)%).

n>1 n>1
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