

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Monogenity of totally real algebraic extension fields over a cyclotomic field

Nadia Khan^{a,*,1}, Shin-ichi Katayama^b, Toru Nakahara^{a,1}, Tsuyoshi Uehara^c

^a National University of Computer & Emerging Sciences [NUCES], Khyber

Pakhtunkhwa [K.P.K.], Pakistan

^b University of Tokushima, Japan

^c Saga University, Japan

A R T I C L E I N F O

Article history: Received 5 March 2015 Received in revised form 2 May 2015 Accepted 18 June 2015 Available online 6 August 2015 Communicated by Michael E. Pohst

To the memory of Professor Dr. Heinrich-Wolfgang LEOPOLDT

MSC: 11R04 11R21 11R29

Keywords: Monogenity Totally real algebraic number field Cyclotomic field Different

ABSTRACT

Let K be a composite field of a cyclotomic field k_n of odd conductor $n \geq 3$ or even one ≥ 8 with 4|n and a totally real algebraic extension field F over the rationals Q and both fields k_n and F are linearly disjoint over Q to each other. Then the purpose of this paper is to prove that such a relatively totally real extension field K over a cyclotomic field k_n has no power integral basis. Each of the composite fields K is also a CM field over the maximal real subfield $k_n^+ \cdot F$ of K. This result involves the previous work for $K = k_n \cdot F$ of the Eisenstein field $k_n = k_3$ and the maximal real subfields $F = k_{p^n}^+$ of prime power conductor p^n with $p \geq 5$, and an analogue $K = k_n \cdot F$ of cyclotomic fields $k_n = k_{2^m}$ ($m \geq 3$) with a totally real algebraic fields F of $K = k_4 \cdot F$ with a cyclic cubic field F except for $k_4 \cdot k_7^+$ and $k_4 \cdot k_{3^2}^+$ of conductors 28 and 36.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.jnt.2015.06.018} 0022-314 X @ 2015 Elsevier Inc. All rights reserved.$

E-mail addresses: p109958@nu.edu.pk (N. Khan), katayama@ias.tokushima-u.ac.jp (S.-i. Katayama), toru.nakahara@nu.edu.pk, nakahara@ms.saga-u.ac.jp, toru.nakahara@qu.edu.pk (T. Nakahara), uehara@ma.is.saga-u.ac.jp (T. Uehara).

 $^{^1}$ Current address: Qarshi University, 8 km from Thokar Niaz Baig, Canal Bank Road, Opossite Izmir Town, Lahore, The Islamic Republic of Pakistan.

1. Introduction

Let L be an algebraic number field over the field Q of rational numbers with degree $[L: \mathbf{Q}] = n. Z_L$ denotes the ring of integers in L. The ring Z_L has an integral basis $\{\omega_j\}_{0\leq j\leq n-1}$ as a Z-module $Z[\omega_0,\cdots,\omega_{n-1}]$ of rank n, where Z denotes the ring of rational integers. If there exists an integer ξ such that $Z_L = \mathbf{Z}[1, \xi, \cdots, \xi^{n-1}]$, then we say that Z_L has a power integral basis or L is monogenic. To characterize a family \mathcal{F} of algebraic number fields whose rings of integers have a power integral basis is known as a problem of Hasse [9,4,7,8]. If the family \mathcal{F}_+ consists of all the real quadratic fields or the maximal real subfields k_n^+ of cyclotomic fields k_n of conductor n, the fields in \mathcal{F}_+ are totally real and monogenic [6,13]. It is known that if the conductor n of k_n is odd, then for any subfield L of k_n , the ring Z_L of integers in L has a normal basis generated by the Gauß period η of length $\varphi(n)/[k_n:L]$ for a primitive *n*th root ζ of unity [5]. Here $\varphi(\cdot)$ denotes the Euler function. D.S. Dummit and H. Kisilevsky stated that there are infinitely many cyclic cubic fields, accordingly totally real fields which are monogenic [1]. However in the works [12,7], a field L which belongs to the family \mathcal{F}_2 of linearly disjoint abelian extension fields $k \cdot F$ of imaginary quadratic fields k and certain real abelian fields F, Z_L does not have any power integral basis. Each field L in \mathcal{F}_2 is recognized as a relatively totally real abelian extension field over an imaginary quadratic field [Theorem 2, Theorem 3]. Consider the family \mathcal{F}_{\pm} of cyclotomic fields k_n of odd conductor $n \geq 3$ or even one $n \geq 8$ with 4|n and totally real number fields F. Assume that their discriminants of k_n and F are coprime. The aim of this article is to extend our previous results by proving that the composite field $k_n \cdot F$ is not monogenic. Here each field in \mathcal{F}_{\pm} makes a CM field over the totally real maximal subfield $k_n^+ \cdot F$ of L. The related works are found in [2,3,11].

2. Theorem and known results

We claim that

Theorem 1. Let K be a composite field $k_n \cdot F$ of a cyclotomic field k_n of odd conductor $n \geq 3$ or even one $n \geq 8$ with 4|n and a totally real algebraic number field F distinct from the rationals Q. Assume that their field discriminants are coprime. Then K is non-monogenic.

For the following families of the fields K, the monogenity of the rings Z_K of integers in K has been characterized. Theorem 1 involves Theorem 2 and Theorem 3(2) as special families.

Theorem 2. (See [12].) Let K be the composite field of the Eisenstein field k_3 and the maximal real subfield $k_{p^n}^+$ of prime power conductor p^n with $p \ge 5$. Then the ring Z_K of integers in K does not have a power integral basis.

Download English Version:

https://daneshyari.com/en/article/4593546

Download Persian Version:

https://daneshyari.com/article/4593546

Daneshyari.com