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Let K be a composite field of a cyclotomic field k, of odd
conductor n = 3 or even one = 8 with 4|n and a totally real
algebraic extension field F' over the rationals @ and both fields
kn, and F' are linearly disjoint over Q to each other. Then the
purpose of this paper is to prove that such a relatively totally
real extension field K over a cyclotomic field k,, has no power
integral basis. Each of the composite fields K is also a CM
field over the maximal real subfield k; - F' of K. This result
involves the previous work for K = k, - F' of the Eisenstein
field k,, = k3 and the maximal real subfields F = k:; of prime
power conductor p" with p 2 5, and an analogue K = k,, - F/
of cyclotomic fields k, = kom (m = 3) with a totally real
algebraic fields F' of K = k4 - F' with a cyclic cubic field F'
except for ky - k7+ and k4 - k; of conductors 28 and 36.
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1. Introduction

Let L be an algebraic number field over the field @ of rational numbers with degree
[L : Q] = n. Z1, denotes the ring of integers in L. The ring Z; has an integral basis
{wjto<j<n—1 as a Z-module Z[wy, -+ ,w,—1] of rank n, where Z denotes the ring of
rational integers. If there exists an integer ¢ such that Z; = Z[1,&,---,£" Y], then we
say that Z; has a power integral basis or L is monogenic. To characterize a family F of
algebraic number fields whose rings of integers have a power integral basis is known as
a problem of Hasse [9,4,7,8]. If the family F. consists of all the real quadratic fields or
the maximal real subfields k" of cyclotomic fields k,, of conductor n, the fields in F, are
totally real and monogenic [6,13]. It is known that if the conductor n of k,, is odd, then for
any subfield L of k,,, the ring Z, of integers in L has a normal basis generated by the Gauf3
period n of length ¢(n)/[k, : L] for a primitive nth root ¢ of unity [5]. Here ¢(-) denotes
the Euler function. D.S. Dummit and H. Kisilevsky stated that there are infinitely many
cyclic cubic fields, accordingly totally real fields which are monogenic [1]. However in the
works [12,7], a field L which belongs to the family F» of linearly disjoint abelian extension
fields k- F' of imaginary quadratic fields k& and certain real abelian fields F', Z; does not
have any power integral basis. Each field L in F5 is recognized as a relatively totally
real abelian extension field over an imaginary quadratic field [Theorem 2, Theorem 3].
Consider the family F4 of cyclotomic fields k,, of odd conductor n 2 3 or even one n > 8
with 4|n and totally real number fields F. Assume that their discriminants of k,, and F'
are coprime. The aim of this article is to extend our previous results by proving that the
composite field k&, - F' is not monogenic. Here each field in F+ makes a CM field over the
totally real maximal subfield k; - F of L. The related works are found in [2,3,11].

2. Theorem and known results
We claim that

Theorem 1. Let K be a composite field k, - F of a cyclotomic field k,, of odd conductor
n = 3 or even one n = 8 with 4|n and a totally real algebraic number field F distinct
from the rationals Q. Assume that their field discriminants are coprime. Then K is
NoN-monogenic.

For the following families of the fields K, the monogenity of the rings Zx of integers
in K has been characterized. Theorem 1 involves Theorem 2 and Theorem 3(2) as special
families.

Theorem 2. (See [12].) Let K be the composite field of the Fisenstein field ks and the
maximal real subfield k;rn of prime power conductor p"™ with p = 5. Then the ring Zx of
integers in K does not have a power integral basis.
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