Sequences of irreducible polynomials over odd prime fields via elliptic curve endomorphisms

S. Ugolini
Dipartimento di Matematica, Università degli studi di Trento, Via Sommarive 14, I-38050 Povo (Trento), Italy

A R T I C L E I N F O

Article history

Received 25 May 2014
Received in revised form 9
September 2014
Accepted 18 December 2014
Available online 7 February 2015
Communicated by David Goss

Keywords:

Irreducible polynomial iterative
constructions
Finite fields
Elliptic curves

A B S T R A C T

> Text. In this paper we present and analyze a construction of irreducible polynomials over odd prime fields via the transforms which take any polynomial $f \in \mathbf{F}_{p}[x]$ of positive degree n to $\left(\frac{x}{k}\right)^{n} \cdot f\left(k\left(x+x^{-1}\right)\right)$, for some specific values of the odd prime p and $k \in \mathbf{F}_{p}$.

> Video. For a video summary of this paper, please visit http://youtu.be/Lmw5m_c-i8s.
> © 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let f be a polynomial of positive degree n defined over the field \mathbf{F}_{p} with p elements, for some odd prime p. We set $q=p^{n}$ and denote by \mathbf{F}_{q} the finite field with q elements.

For a chosen $k \in \mathbf{F}_{p}^{*}$ we define the Q_{k}-transform of f as

$$
f^{Q_{k}}(x)=\left(\frac{x}{k}\right)^{n} \cdot f\left(\vartheta_{k}(x)\right),
$$

[^0]where ϑ_{k} is the map which takes any element $x \in \mathbf{P}^{1}\left(\mathbf{F}_{q}\right)=\mathbf{F}_{q} \cup\{\infty\}$ to
\[

\vartheta_{k}(x)= $$
\begin{cases}\infty & \text { if } x=0 \text { or } \infty \\ k \cdot\left(x+x^{-1}\right) & \text { otherwise }\end{cases}
$$
\]

The aforementioned Q_{k}-transforms seem a natural generalization of some specific transforms employed by different authors for the synthesis of irreducible polynomials over finite fields. In [3] Meyn used the so-called Q-transform, which coincides with the Q_{1}-transform according to the notations of the present paper. Moreover, setting $k=\frac{1}{2}$ we recover the R-transform introduced by Cohen [1] and used more recently by us [5] to construct sequences of irreducible polynomials over odd prime fields.

In this paper we would like to take advantage of the knowledge of the dynamics of the maps ϑ_{k} for some specific values of k [4] and extend our investigation [5]. In the following we will give a thorough description of the sequences of irreducible polynomials constructed by repeated applications of a Q_{k}-transform, when k belongs to one of the following sets:

- $C_{1}=\left\{\frac{1}{2},-\frac{1}{2}\right\}$;
- $C_{2}=\left\{k \in \mathbf{F}_{p}: k\right.$ is a root of $\left.x^{2}+\frac{1}{4}\right\}$, provided that $p \equiv 1(\bmod 4)$;
- $C_{3}=\left\{k \in \mathbf{F}_{p}: k\right.$ is a root of $\left.x^{2}+\frac{1}{2} x+\frac{1}{2}\right\}$, provided that $p \equiv 1,2$, or $4(\bmod 7)$;
- $C_{3}^{-}=\left\{k \in \mathbf{F}_{p}:-k\right.$ is a root of $\left.x^{2}+\frac{1}{2} x+\frac{1}{2}\right\}$, provided that $p \equiv 1,2$, or $4(\bmod 7)$.

Indeed, the case $k=\frac{1}{2}$ has been analyzed in [5] and we can easily adapt the results of that paper to the case $k=-\frac{1}{2}$ (see the subsequent Remark 2.2). Hence, in this paper we will mainly concentrate on the cases that $k \in C_{2} \cup C_{3} \cup C_{3}^{-}$.

2. Preliminaries

Let p be an odd prime and q a power of p. For a fixed $k \in \mathbf{F}_{p}^{*}$, the dynamics of the map ϑ_{k} over $\mathbf{P}^{1}\left(\mathbf{F}_{q}\right)$ can be visualized by means of the graph $G_{\vartheta_{k}}^{q}$, whose vertices are labeled by the elements of $\mathbf{P}^{1}\left(\mathbf{F}_{q}\right)$ and where a vertex α is joined to a vertex β if $\beta=\vartheta_{k}(\alpha)$. As in [4] we say that an element $x \in \mathbf{P}^{1}\left(\mathbf{F}_{q}\right)$ is ϑ_{k}-periodic if $\vartheta_{k}^{r}(x)=x$ for some positive integer r. We will call the smallest of such integers r the period of x with respect to the map ϑ_{k}. Nonetheless, if an element $x \in \mathbf{P}^{1}\left(\mathbf{F}_{q}\right)$ is not ϑ_{k}-periodic, then it is preperiodic, namely $\vartheta_{k}^{l}(x)$ is ϑ_{k}-periodic for some positive integer l.

In [4] the reader can find more details about the length and the number of the cycles of $G_{\vartheta_{k}}^{q}$, when $k \in C_{1} \cup C_{2} \cup C_{3}$. For the purposes of the present paper we are just interested in the structure of the reversed binary trees attached to the vertices of a cycle.

The following lemma shows how the maps ϑ_{k} and ϑ_{-k} are related, for any $k \in \mathbf{F}_{p}^{*}$.
Lemma 2.1. Let $k \in \mathbf{F}_{p}^{*}$ and $x \in \mathbf{P}^{1}\left(\mathbf{F}_{q}\right)$. The following hold:
(1) $\vartheta_{k}^{2 r}(x)=\vartheta_{-k}^{2 r}(x)$ for any nonnegative integer r;

https://daneshyari.com/en/article/4593555

Download Persian Version:
https://daneshyari.com/article/4593555

Daneshyari.com

[^0]: E-mail address: sugolini@gmail.com.

