

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Determination of elliptic curves by their adjoint p-adic L-functions

Maria M. Nastasescu

Department of Mathematics, California Institute of Technology, MC 253-37, Pasadena, CA 91125, USA

ARTICLE INFO

Article history: Received 10 June 2014 Received in revised form 20 October 2014 Accepted 2 December 2014 Available online 4 February 2015 Communicated by Ph. Michel

Keywords: L-function p-adic L-function Elliptic curve

ABSTRACT

Fix p an odd prime. Let E be an elliptic curve over \mathbb{Q} with semistable reduction at p. We show that the adjoint p-adic L-function of E evaluated at infinitely many integers prime to p completely determines up to a quadratic twist the isogeny class of E. To do this, we prove a result on the determination of isobaric representations of $\operatorname{GL}(3, \mathbb{A}_{\mathbb{Q}})$ by certain L-values of p-power twists.

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we will prove the following result concerning the *p*-adic *L*-function of the symmetric square of an elliptic curve over \mathbb{Q} , denoted $L_p(Sym^2 E, s)$ for $s \in \mathbb{Z}_p$. More specifically, Theorem 1 gives a generalization of the result obtained in [14] concerning *p*-adic *L*-functions of elliptic curves over \mathbb{Q} :

Theorem 1. Let p be an odd prime and E, E' be elliptic curves over \mathbb{Q} with semistable reduction at p. Suppose

 $E\text{-}mail\ address:\ {\tt mnastase@caltech.edu}.$

$$L_p(Sym^2 E, n) = CL_p(Sym^2 E', n)$$

$$(1.1)$$

for all integers n prime to p in an infinite set Y and some constant $C \in \overline{\mathbb{Q}}$. Then E' is isogenous to a quadratic twist E_D of E. If E and E' have square free conductors, then E and E' are isogenous over \mathbb{Q} .

Suppose E has good reduction at p. We follow the definition in [5] of the p-adic L-function for the symmetric square of an elliptic curve E over \mathbb{Q} which is defined as the Mazur–Mellin transform of a p-adic measure $\mu_p := \mu_p(E)$. If $\chi : \mathbb{Z}_p^{\times} \to \mathbb{C}_p^{\times}$ is a non-trivial wild p-adic character of conductor $p^{m_{\chi}}$, which can be identified with a primitive Dirichlet character, then

$$L_p(Sym^2 E, \chi) = \int_{\mathbb{Z}_p^{\times}} \chi d\mu_p = C_E \cdot \alpha_p^{-2m_{\chi}} \tau(\overline{\chi})^2 p^{m_{\chi}} L(Sym^2 E, \chi, 2)$$
(1.2)

where C_E is a constant that depends on E, $\tau(\chi)$ is the Gauss sum of χ and α_p is a root of the polynomial $X^2 - a_p X + p$, with $a_p = p + 1 - \#E(\mathbb{F}_p)$. It is proved in [5] that if E has good ordinary reduction at p then $\mu_p(E)$ is a bounded measure on \mathbb{Z}_p^{\times} , while if Ehas good supersingular reduction at p then $\mu_p(E)$ is h-admissible with h = 2 (cf. [23]).

Similarly, if E has bad multiplicative reduction at p, then for a non-trivial even Dirichlet character as above we have

$$L_p(Sym^2 E, \chi) = \int_{\mathbb{Z}_p^{\times}} \chi \mathrm{d}\mu_p = C'_E \tau(\bar{\chi})^2 p^{m_{\chi}} L(Sym^2 E, \chi, 2), \qquad (1.3)$$

with $\mu_p(E)$ a bounded measure on \mathbb{Z}_p^{\times} .

 Set

$$L_p(Sym^2 E, \chi, s) := L_p(Sym^2 E, \chi \cdot \langle x \rangle^s)$$

where $\langle \cdot \rangle : \mathbb{Z}_p^{\times} \to 1 + p\mathbb{Z}_p$, with $\langle x \rangle = \frac{x}{\omega(x)}$ and $\omega : \mathbb{Z}_p^{\times} \to \mathbb{Z}_p^{\times}$ the Teichmüller character.

Using the theory of h-admissible measures developed in [23], by Lemma 4 in Section 6 identity (1.1) implies that

$$L_p(Sym^2 E, \chi, s) = CL_p(Sym^2 E', \chi, s)$$

holds for all $s \in \mathbb{Z}_p$ and χ a wild *p*-adic character.

Let f, f' be the newforms of weight 2 associated to E and E', and π , π' the unitary cuspidal automorphic representations of $GL(2, \mathbb{A}_{\mathbb{Q}})$ generated by f and f' respectively. Then

$$L(Sym^{2} E, s) = L(Sym^{2} \pi, s - 1)$$
(1.4)

Download English Version:

https://daneshyari.com/en/article/4593561

Download Persian Version:

https://daneshyari.com/article/4593561

Daneshyari.com