On the largest prime factor of the ratio of two generalized Fibonacci numbers

Carlos Alexis Gómez Ruiz ${ }^{\text {a,* }}$, Florian Luca ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Matemáticas, Universidad del Valle, 25360 Cali, Calle 13 No 100-00, Colombia
${ }^{\text {b }}$ School of Mathematics, University of the Witwatersrand, P.O. Box Wits 2050, South Africa

A R T I C L E I N F O

Article history:

Received 4 June 2014
Received in revised form 23
September 2014
Accepted 27 November 2014
Available online 17 February 2015
Communicated by David Goss

$M S C$:

11B39
11J86
Keywords:
Generalized Fibonacci numbers Lower bounds for nonzero linear forms in logarithms of algebraic numbers

A B S TRACT

A generalization of the well-known Fibonacci sequence is the k-generalized Fibonacci sequence $\left(F_{n}^{(k)}\right)_{n \geq 2-k}$ for some integer $k \geq 2$, whose first k terms are $0, \ldots, 0,1$ and each term afterwards is the sum of the preceding k terms. In this paper, we look at the prime factors of the reduced rational number $F_{n}^{(k)} / F_{m}^{(\ell)}$ as $\max \{m, n, k, \ell\}$ tends to infinity.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$ satisfies the recurrence $F_{n+2}=F_{n+1}+F_{n}$ for all $n \geq 0$, with the initial values $F_{0}=0, F_{1}=1$. A well-known generalization of this is

[^0]the k-generalized Fibonacci sequence $\left(F_{n}^{(k)}\right)_{n \geq 2-k}$, which satisfies the k-th order linear recurrence
$$
F_{n+k}^{(k)}=F_{n+k-1}^{(k)}+\cdots+F_{n}^{(k)} \quad(n \geq 2-k)
$$
with the k initial values $0,0, \ldots, 1$. Observe that
$$
F_{1}^{(k)}=1, F_{2}^{(k)}=1, F_{3}^{(k)}=2, \ldots, F_{k+1}^{(k)}=2^{k-1}, \quad \text { and } \quad F_{k+1}^{(k)}=2^{k}-1
$$

In particular, $F_{j}^{(k)}$ is a power of 2 for all $1 \leq j \leq k+1$. Such powers of 2 are called trivial. In [2], it was shown that there is no nontrivial power of 2 in the k-generalized Fibonacci sequence $\left(F_{n}^{(k)}\right)_{n \geq 1}$ for any $k \geq 3$. When $k=2$, the only nontrivial power of 2 is $F_{6}^{(2)}=8$. An extension of this result appears in [6], where it is proved that if $k \geq 2$ and $m \geq 1, n \geq 1, s \geq 0$ are such that

$$
F_{n}^{(k)}=2^{s} F_{m}^{(k)},
$$

then either $s=0$ (and $m=n$) or $F_{m}^{(k)}$ is a power of 2 . In particular, if on the set $\left\{F_{n}^{(k)}: n \geq 1\right\}$ we put an equivalence relation under which a is equivalent to b if the ratio a / b is a power of 2 of integer exponent, then there is an equivalence class formed by all powers of 2 (classified in [2]) and all other equivalence classes are singletons. In particular, if the largest odd factor of $F_{n}^{(k)}$ exceeds 1 , then this largest odd factor uniquely determines n.

In [3], the equation

$$
\begin{equation*}
F_{n}^{(k)}=F_{m}^{(\ell)} \tag{1}
\end{equation*}
$$

was studied. To avoid trivialities, it was assumed that $n \geq k+2, m \geq \ell+2$ and $(n, k) \neq(m, \ell)$. Under these assumptions together with $k>\ell$, it was shown that the only solutions are

$$
(n, k, m, \ell)=(6,3,7,2),(11,7,12,3)
$$

For an integer m put $P(m)$ for the maximal prime factor of m with the convention that $P(0)=P(\pm 1)=1$. For a rational number a / b in reduced form, put $P(a / b)$ for $P(a b)=\max \{P(a), P(b)\}$. In [1], it was shown that the inequality

$$
\begin{equation*}
P\left(F_{n}^{(k)}\right) \geq 0.01 \sqrt{\log n \log \log n} \tag{2}
\end{equation*}
$$

holds for all $k \geq 2$ and $n \geq k+2$.
In this paper, we study a more general problem which in particular encompasses all of the above. Namely, for positive integers $n, m, k \geq 2, \ell \geq 2$ we write

https://daneshyari.com/en/article/4593562

Download Persian Version:
https://daneshyari.com/article/4593562

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: carlos.a.gomez@correounivalle.edu.co (C.A. Gómez Ruiz), Florian.Luca@wits.ac.za (F. Luca).

