

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Distribution of cusp sections in the Hilbert modular orbifold **,****

Samuel Estala-Arias

Unidad Cuernavaca del Instituto de Matemáticas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Colonia Lomas de Chamilpa, C.P. 62210, Cuernavaca. Morelos, Mexico

ARTICLE INFO

Article history:
Received 5 December 2011
Received in revised form 13 August 2014
Accepted 19 August 2014
Available online 26 February 2015
Communicated by David Goss

Keywords:
Hilbert modular orbifold
Eisenstein series
Dedekind zeta function

ABSTRACT

Text. Let K be a number field, let \mathcal{M} be the Hilbert modular orbifold of K, and let m_q be the probability measure uniformly supported on the cusp cross sections of \mathcal{M} at height q. We show that m_q distributes uniformly with respect to the normalized Haar measure m on \mathcal{M} as q tends to zero, and relate the rate by which m_q approaches m to the Riemann hypothesis for the Dedekind zeta function of K.

Video. For a video summary of this paper, please visit http://youtu.be/_39k9paBQjM.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathscr{H}_2 = \{x + iy \in \mathbb{C} \mid y > 0\}$ be the Poincaré upper half-plane with the hyperbolic metric $ds^2 = (dx^2 + dy^2)/y^2$. The group $PSL(2,\mathbb{R})$ acts on \mathscr{H}_2 by fractional linear transformations which, as well, are hyperbolic isometries. The modular group $PSL(2,\mathbb{Z})$ is a discrete subgroup of $PSL(2,\mathbb{R})$ and the quotient space $PSL(2,\mathbb{Z}) \backslash \mathscr{H}_2$ is the classical modular orbifold. From the classification of horocycles it follows that for each y > 0, the

^{*} Research partially supported by CONACYT grant number 164447.

 ^{☆☆} This article constitutes the author's PhD thesis [9].
 E-mail address: samuel@matcuer.unam.mx.

modular orbifold has a unique closed horocycle C_y of length y^{-1} . Let m_y be the probability measure uniformly supported on C_y (w.r.t. arc length). Let m be the normalized hyperbolic measure of $PSL(2,\mathbb{Z})\backslash \mathcal{H}_2$. We have the following well-known result due to D. Zagier (cf. [35]).

Theorem 1. Let f be a smooth function on $PSL(2,\mathbb{Z})\backslash \mathscr{H}_2$ with compact support. Then,

$$m_y(f) = m(f) + o(y^{1/2 - \epsilon}) \qquad (y \to 0)$$

for all $0 < \epsilon < 1/2$.

In particular, the measures m_y converge vaguely to m as $y \to 0$. Besides, in [35] Zagier establishes the following remarkable equivalence to the Riemann hypothesis.

Theorem 2. The Riemann hypothesis holds if and only if for every smooth function f with compact support on $PSL(2,\mathbb{Z})\backslash \mathscr{H}_2$ one has

$$m_y(f) = m(f) + o(y^{3/4 - \epsilon}) \qquad (y \to 0)$$

for all $0 < \epsilon < 3/4$.

The unit tangent bundle of $PSL(2,\mathbb{Z})\backslash\mathscr{H}_2$ can be identified with $PSL(2,\mathbb{Z})\backslash PSL(2,\mathbb{R})$ and the horocycle flow on $PSL(2,\mathbb{Z})\backslash PSL(2,\mathbb{R})$ is given by right multiplication with $\begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$. The horocycle flow on $PSL(2,\mathbb{Z})\backslash PSL(2,\mathbb{R})$ has a unique closed orbit \widetilde{C}_y of length y^{-1} for each y>0. In the related work [23], P. Sarnak proved an analogue of Theorems 1 and 2 for $PSL(2,\mathbb{Z})\backslash PSL(2,\mathbb{R})$, and he also showed that the analogue of Theorem 1 holds for general non-compact hyperbolic surfaces of finite area. Likewise, in [31] A. Verjovsky has shown that the analogous estimate of Theorem 1 in Sarnak's work is optimal for certain characteristic functions on $PSL(2,\mathbb{Z})\backslash PSL(2,\mathbb{R})$ and he also found a discrete measure on \mathbb{R} related to this problem (cf. [32]). Many other aspects of this more general problem of equidistribution of closed horospheres for general cofinite hyperbolic manifolds have been considered by many authors. As a guide to the reader we mention Hejhal [14], Flaminio and Forni [10], Eskin and McMullen [8]. We also quote Refs. [5,28,26]. Finally, Cacciatori and Cardella have generalized Zagier's work to the case of certain horospheres in Siegel modular orbifolds [2].

The purpose of this article is to apply Zagier's theory to the case of a number field. Let us briefly describe our results. Given a number field K of degree $n = r_1 + 2r_2$ with ring of integers \mathfrak{o} , there exists a Riemannian manifold $\mathcal{H} = (\mathscr{H}_2)^{r_1} \times (\mathscr{H}_3)^{r_2}$ where the Hilbert modular group $\Gamma = PSL(2,\mathfrak{o})$ acts properly and discontinuously. If the field K has class number h, then the Hilbert modular orbifold $\mathscr{M} = \Gamma \backslash \mathcal{H}$ has h cusps and each cusp can be parametrized by the standard cusp at infinity. From the geometry of \mathscr{M} , it follows that, for each cusp λ and q > 0, there exist a generalized closed horosphere $\Gamma_{\lambda} \backslash B(q,\lambda)$ of dimension $2r_1 + 3r_2 - 1$ and volume $q^{-1}c$, where c is a certain constant

Download English Version:

https://daneshyari.com/en/article/4593578

Download Persian Version:

https://daneshyari.com/article/4593578

<u>Daneshyari.com</u>