Perfect power Riesel numbers

Carrie Finch ${ }^{\text {a }}$, Lenny Jones ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Mathematics Department, Washington and Lee University, Lexington, VA 24450, United States
b Department of Mathematics, Shippensburg University, Shippensburg, PA 17257, United States

A R T I C L E I N F O

Article history:

Received 1 August 2014
Received in revised form 26 October 2014
Accepted 2 November 2014
Available online 7 January 2015
Communicated by David Goss

MSC:

11B83
11 Y 05
Keywords:
Riesel number
Covering

Abstract

A Riesel number k is an odd positive integer such that $k \cdot 2^{n}-1$ is composite for all integers $n \geq 1$. In 2003, Chen proved that there are infinitely many Riesel numbers of the form k^{r}, when $r \not \equiv 0,4,6,8(\bmod 12)$, and he conjectured that such Riesel powers exist for all positive integers r. In 2008, Filaseta, Finch and Kozek extended Chen's theorem slightly by constructing Riesel numbers of the form k^{4} and k^{6}. In 2009, Wu and Sun provided more evidence to support Chen's conjecture by showing that there exist infinitely many Riesel numbers of the form k^{r} for any positive integer r that is coprime to 15015 . In this article, we extend the results of Wu and Sun by proving that there exist infinitely many Riesel numbers of the form k^{r} for any positive integer r that is coprime to 105 .

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A Riesel number k is an odd positive integer with the property that $k \cdot 2^{n}-1$ is composite for all natural numbers n. The smallest known Riesel number is 509203 ; indeed, H. Riesel [9] showed that if $k \equiv 509203(\bmod 11184810)$, then k is a Riesel

[^0]number. It is believed that 509203 is the smallest Riesel number. As of this writing, there are 50 odd positive integers smaller that 509203 that are still candidates. See www. prothsearch.net/rieselprob.html for the most up-to-date information.

In 2003, Y.G. Chen [2] showed that there are perfect power Riesel numbers for certain powers. In particular, for values of r that are either odd or twice an odd number not divisible by 3 , he constructed integers k such that $k^{r} \cdot 2^{n}-1$ is composite for all natural numbers n. Furthermore, Chen conjectured that there are Riesel numbers that are perfect r-th powers for any positive integer r. In 2008, Filaseta, Finch and Kozek [5] extended Chen's theorem slightly by proving for each $n \in\{4,6\}$ that there exists a set \mathcal{T}_{n} of positive density such that each element in \mathcal{T}_{n} is a Riesel number of the form k^{r} with $r \equiv 0(\bmod n) . W u$ and Sun [11] provided further evidence in 2009 to support Chen's conjecture by showing that there exist infinitely many Riesel numbers of the form k^{r} for any positive integer r that is coprime to 15015 . In this paper, we extend the result of Wu and Sun by establishing the following theorem.

Theorem 1.1. For any positive integer r with $\operatorname{gcd}(r, 105)=1$, there exist infinitely many odd positive integers k such that $k^{r} \cdot 2^{n}-1$ is composite for all integers $n \geq 1$. Moreover, $k^{r} \cdot 2^{n}-1$ has at least two distinct prime divisors for each value of n, when $r \geq 4$.

2. Preliminaries

The following concept, due to Erdős [4], is crucial to the proof of Theorem 1.1.
Definition 2.1. A covering of the integers is a finite system of congruences $x \equiv a_{i}$ $\left(\bmod m_{i}\right)$, where $m_{i}>1$, such that every integer n satisfies at least one of the congruences. For brevity of notation, we present a covering \mathcal{C} as a set of ordered pairs $\left(a_{i}, m_{i}\right)$. We let $\mathcal{L}_{\mathcal{C}}$ denote the least common multiple of all the moduli m_{i} occurring in \mathcal{C}.

Quite often when a covering \mathcal{C} is used to solve a problem, there is a set of prime numbers associated with \mathcal{C}. In the situation occurring in this article, for each $\left(a_{i}, m_{i}\right) \in \mathcal{C}$, there exists a corresponding prime p_{i}, such that $2^{m_{i}} \equiv 1\left(\bmod p_{i}\right)$, where $2^{s} \not \equiv 1\left(\bmod p_{i}\right)$ for all positive integers $s<m_{i}$. We call such a prime a primitive divisor of $2^{m_{i}}-1$. In terms of group theory, a primitive divisor p of $2^{m}-1$, where $m>1$ is an integer, is a prime such that in the group of units modulo p, which we denote $\left(\mathbb{Z}_{p}\right)^{*}$, the element 2 has order m. We denote the order of the integer z modulo a prime p as $\operatorname{ord}_{p}(z)$.

A covering with certain restrictions on the moduli is used to establish Theorem 1.1. To build this covering, we can use a particular modulus $m>1$ as many times as there are distinct primitive divisors of $2^{m}-1$. It is well known that $2^{m}-1$, with $m>1$, has at least one primitive divisor as long as $m \neq 6$. This result is originally due to Bang [1].

Two additional facts are needed here. The first result is due to Darmon and Granville [3].

https://daneshyari.com/en/article/4593587

Download Persian Version:

https://daneshyari.com/article/4593587

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: 1kjone@ship.edu (L. Jones).

