On the Erdős-Turán conjecture ${ }^{\text {ax }}$

Min Tang
School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, PR China

A R T I C L E I N F O

Article history:

Received 12 August 2014
Received in revised form 27 October 2014
Accepted 2 November 2014
Available online 9 January 2015
Communicated by David Goss

MSC:

11B34
11B13
Keywords:
Erdős-Turán conjecture
Basis of order k
Density

A B S T R A C T

Text. Let \mathbb{N} be the set of all nonnegative integers and $k \geq 2$ be a fixed integer. For a set $A \subseteq \mathbb{N}$, let $r_{k}(A, n)$ denote the number of solutions of $a_{1}+\cdots+a_{k}=n$ with $a_{1}, \ldots, a_{k} \in A$. In this paper, we prove that for given positive integer u, there is a set $A \subseteq \mathbb{N}$ such that $r_{k}(A, n) \geq 1$ for all $n \geq 0$ and the set of n with $r_{k}(A, n)=k!u$ has density one. This generalizes recent results of Chen and Yang.

Video. For a video summary of this paper, please visit http://youtu.be/2fbKtDAOqQ0.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{N} be the set of all nonnegative integers and $k \geq 2$ be a fixed integer. For any set $A \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, let

$$
r_{k}(A, n)=\sharp\left\{\left(a_{1}, \ldots, a_{k}\right) \in A^{k}: a_{1}+\cdots+a_{k}=n\right\} .
$$

[^0]We call $A \subseteq \mathbb{N}$ an asymptotic basis of order k if there is $n_{0}=n_{0}(A)$ such that $r_{k}(A, n) \geq 1$ for each positive integer $n \geq n_{0}$. In particular, we call $A \subseteq \mathbb{N}$ a basis of order k if $r_{k}(A, n) \geq 1$ for all $n \geq 0$.

The well-known Erdős-Turán conjecture [4] states that if A is an asymptotic basis of order 2 , then $r_{2}(A, n)$ cannot be bounded. This harmlessly looking conjecture has attracted many mathematics since 1941. But, to our regret, not much is known about Erdős-Turán conjecture itself. Erdős-Turán conjecture seems to be extremely difficult. In 1990, Ruzsa [7] found a basis A of \mathbb{N} for which $r_{2}(A, n)$ is bounded in the square mean. That is, he constructed a basis $A \subseteq \mathbb{N}$ satisfying $\sum_{n \leq N} r_{2}^{2}(A, n)=O(N)$. Based on the method of Ruzsa, Tang [8] gave a quantitative version of Ruzsa's theorem. Recently, Chen and Yang [3] gave a new better bound in Ruzsa's theorem. They announced that they can find a basis of A of \mathbb{N} such that $\sum_{n \leq N} r_{2}^{2}(A, n) \leq 2920 N$ for all $N \geq 1$. In 2003, Grekos et al. [5] proved that if A is a basis of order 2 , then $\lim _{\sup _{n \rightarrow \infty} r_{2}(A, n) \geq 6 \text {. In }}$ 2005, Borwein et al. [1] improved 6 to 8. In 2012, Chen [2] proved that there is a basis A of order 2 such that the set of n with $r_{2}(A, n)=2$ has density one. Recently, Yang [9] extended Chen's theorem to basis of order k, he proved the following result.

Theorem A. For any integer $k \geq 2$, there is a basis $A_{k} \subseteq \mathbb{N}$ of order k such that the set of n with $r_{k}\left(A_{k}, n\right)=k$! has density one.

In this paper, we extend Chen and Yang's results as follows.

Theorem 1. Let $k \geq 2$ be a fixed integer. Then for any positive integer u, there is a set $A \subseteq \mathbb{N}$ such that $r_{k}(A, n) \geq 1$ for all $n \geq 0$ and the set of n with $r_{k}(A, n)=k!u$ has density one.

2. Proofs

Lemma 1. (See [6, Theorem 143].) Almost all positive integers, when expressed in any scale, contain a given possible sequence of digits.

Proof of Theorem 1. By Theorem A, we only need to consider the case $u \geq 2$. Now we suppose that $u \geq 2$.

For $j=0,1, \ldots, k-1$, let

$$
A_{j}=\left\{\sum_{i=0}^{\infty} \varepsilon_{i} k^{k i+j}: \varepsilon_{i} \in\{0,1, \ldots, k-1\}\right\}=\left\{0=a_{1}^{(j)}<a_{2}^{(j)}<\cdots\right\}
$$

where in each sum there are only finitely many $\varepsilon_{i} \neq 0$.
Let

$$
H=\left\{0=a_{1}^{(0)}<\cdots<a_{u}^{(0)}\right\} .
$$

https://daneshyari.com/en/article/4593589

Download Persian Version:
https://daneshyari.com/article/4593589

Daneshyari.com

[^0]: कर This work was supported by the National Natural Science Foundation of China (Grant Nos. 11471017 and 11371195).

 E-mail address: tmzzz2000@163.com.

