

Contents lists available at ScienceDirect

## Journal of Number Theory

www.elsevier.com/locate/jnt

# Cyclotomy of Weil sums of binomials



Yves Aubry<sup>a,b</sup>, Daniel J. Katz<sup>c,\*</sup>, Philippe Langevin<sup>a</sup>

<sup>a</sup> Institut de Mathématiques de Toulon, Université de Toulon, 83957 La Garde Cedex, France

<sup>b</sup> Institut de Mathématiques de Marseille, CNRS-UMR 7373, Aix-Marseille Université, 13288 Marseille Cedex 9. France

 $^{\rm c}$  Department of Mathematics, California State University, Northridge, CA 91330, United States

#### A R T I C L E I N F O

Article history: Received 7 January 2014 Received in revised form 21 February 2015 Accepted 23 February 2015 Available online 3 April 2015 Communicated by D. Wan

MSC: 11T23 11L05 11T22

Keywords: Weil sum Character sum Finite field Cyclotomy

#### АВЅТ КАСТ

The Weil sum  $W_{K,d}(a) = \sum_{x \in K} \psi(x^d + ax)$  where K is a finite field,  $\psi$  is an additive character of K, d is coprime to  $|K^{\times}|$ , and  $a \in K^{\times}$  arises often in number-theoretic calculations, and in applications to finite geometry, cryptography, digital sequence design, and coding theory. Researchers are especially interested in the case where  $W_{K,d}(a)$  assumes three distinct values as a runs through  $K^{\times}$ . A Galois-theoretic approach, combined with p-divisibility results on Gauss sums, is used here to prove a variety of new results that constrain which fields K and exponents d support three-valued Weil sums, and restrict the values that such Weil sums may assume.

© 2015 Elsevier Inc. All rights reserved.

 $<sup>\</sup>ast\,$  Corresponding author.

*E-mail addresses:* yves.aubry@univ-tln.fr (Y. Aubry), daniel.katz@csun.edu (D.J. Katz), langevin@univ-tln.fr (P. Langevin).

### 1. Introduction

Let K be a finite field of characteristic p. Let  $\psi_K$  be the canonical additive character of K, that is,  $\psi_K(x) = \exp(2i\pi \operatorname{Tr}_{K/\mathbb{F}_p}(x)/p)$  where  $\operatorname{Tr}_{K/\mathbb{F}_p}$  is the absolute trace. Weil sums with  $\psi_K$  applied to binomials, that is, sums of the form  $\sum_{x \in K} \psi_K(bx^j + cx^k)$ , have been studied extensively from the early twentieth century to present [32,37,41,14,1,23,6, 7,33,31,11,9,10]. We are interested in such sums when j and k are coprime to  $|K^{\times}|$ , in which case we reparameterize them to obtain sums of the form

$$W_{K,d}(a) = \sum_{x \in K} \psi_K(x^d + ax) \tag{1}$$

with  $gcd(d, |K^{\times}|) = 1$  and  $a \in K$ . This definition will remain in force throughout the paper, and we shall always insist that  $gcd(d, |K^{\times}|) = 1$  whenever we write  $W_{K,d}$ . The sums  $W_{K,d}(a)$  are always real algebraic integers [20, Theorem 3.1(a)], and furthermore, are all rational integers if and only if  $d \equiv 1 \pmod{p-1}$  [20, Theorem 4.2]. Apart from arising often in number-theoretic calculations, these sums are also the key to problems in finite geometry, cryptography, digital sequence design, and coding theory, as discussed in [27, Appendix].

For a fixed K and d, we consider  $W_{K,d}(a)$  as a function of  $a \in K^{\times}$ , and are interested in how many different values it assumes as a runs through  $K^{\times}$ .  $W_{K,d}(a)$  with a = 0 is passed over, as it is the Weil sum of the monomial  $x^d$ , and since  $x \mapsto x^d$  is a permutation of K, we always have  $W_{K,d}(0) = 0$ . We call  $\{W_{K,d}(a) : a \in K^{\times}\}$  the value set of  $W_{K,d}$ , and say that  $W_{K,d}$  is v-valued over K to mean that this set is of cardinality v.

If  $d \equiv p^j \pmod{|K^{\times}|}$  for some j, we say that d is degenerate over K, because  $\operatorname{Tr}_{K/\mathbb{F}_p}(x^d + ax) = \operatorname{Tr}_{K/\mathbb{F}_p}((1+a)x)$ , and so the binomial effectively becomes zero (if a = -1) or a nonvanishing linear form (if  $a \neq -1$ ). Thus if d is degenerate over K, one readily obtains for  $a \in K$  that

$$W_{K,d}(a) = \begin{cases} |K| & \text{if } a = -1, \\ 0 & \text{otherwise.} \end{cases}$$
(2)

Helleseth [20, Theorem 4.1] shows that one always obtains a richer value set in the nondegenerate case.

**Theorem 1.1.** (See Helleseth, 1976.) If d is nondegenerate over K, then  $W_{K,d}(a)$  takes at least three values as a runs through  $K^{\times}$ .

Here we want to know when Weil sums of this form can be three-valued, and if so, what are the three values they may take. We indicate all known infinite families of three-valued examples, arranged according to analogy, in Table 1 below.

In several entries, we make use of the *p*-adic valuation of an integer a, denoted val<sub>p</sub>(a), which is the maximum k such that  $p^k \mid a$  (or  $\infty$  if a = 0). We write "nondegenerate" in

Download English Version:

https://daneshyari.com/en/article/4593611

Download Persian Version:

https://daneshyari.com/article/4593611

Daneshyari.com