On a conjecture of de Koninck ${ }^{\text {N }}$

Yong-Gao Chen *, Xin Tong
School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China

A R T I C L E I N F O

Article history:

Received 12 October 2014
Received in revised form 21
February 2015
Accepted 22 February 2015
Available online 2 April 2015
Communicated by David Goss

MSC:

11A25
11A41

Keywords:

Sum of divisors
Squarefree core
De Koninck's conjecture

Abstract

For a positive integer n, let $\sigma(n)$ and $\gamma(n)$ denote the sum of divisors and the product of distinct prime divisors of n, respectively. It is known that, if $\sigma(n)=\gamma(n)^{2}$, then at most two exponents of odd primes are equal to 1 in the prime factorization of n. In this paper, we prove that, if $\sigma(n)=\gamma(n)^{2}$ and only one exponent is equal to 1 in the prime factorization of n, then (1) n is divisible by 3 ; (2) n is divisible by the fourth powers of at least two odd primes; (3) at least two exponents of odd primes are equal to 2 . We also prove that, if $\sigma(n)=\gamma(n)^{2}$, then at least half of the exponents α of the primes have the property that the numbers $\alpha+1$ must be either primes or prime squares.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

For a positive integer n, let $\sigma(n)$ and $\gamma(n)$ denote the sum of divisors and the product of distinct prime divisors of n, respectively. De Koninck (see Guy [5, Section B11]) conjectured that the equation

[^0]\[

$$
\begin{equation*}
\sigma(n)=\gamma(n)^{2} \tag{1.1}
\end{equation*}
$$

\]

has only solutions $n=1$ and $n=1728$. Let \mathcal{K} denote the set of all solutions n to (1.1).
Broughan, de Koninck, Kátai and Luca [3] proved that Eq. (1.1) with $\omega(n) \leq 4$ has only solutions $n=1$ and $n=1728$, and if $n>1$ and $n \in \mathcal{K}$, then the prime factorization of n has the form

$$
\begin{equation*}
n=2^{\alpha} p \prod_{i=1}^{s} p_{i}^{\alpha_{i}} \tag{1.2}
\end{equation*}
$$

where $\alpha \geq 1, \alpha_{i}(2 \leq i \leq s)$ are even and either $p \equiv p_{1} \equiv \alpha_{1} \equiv 1(\bmod 4)$ or $p \equiv 3(\bmod 8)$ and α_{1} is even. This is equivalent to

Theorem A. If $n>1$ and $n \in \mathcal{K}$, then the prime factorization of n has the form either

$$
\begin{equation*}
n=2^{\alpha} p q \prod_{i=1}^{s} p_{i}^{\alpha_{i}} \tag{1.3}
\end{equation*}
$$

where $\alpha \geq 1, \alpha_{i}(1 \leq i \leq s)$ are even and $p \equiv q \equiv 1(\bmod 4)$, or

$$
\begin{equation*}
n=2^{\alpha} p \prod_{i=1}^{s} p_{i}^{\alpha_{i}} \tag{1.4}
\end{equation*}
$$

where $\alpha \geq 1, \alpha_{i}(2 \leq i \leq s)$ are even and either $p \equiv p_{1} \equiv \alpha_{1} \equiv 1(\bmod 4), \alpha_{1} \geq 5$ or $p \equiv 3(\bmod 8)$ and α_{1} is even.

Recently, Broughan, Delbourgo and Zhou [4] proved the following result:
Theorem B. (See [4, Theorem 1].) If $n \in \mathcal{K}$ and $n>1$, then n is divisible by the fourth power of an odd prime.

In this paper, the following results are proved.
Theorem 1.1. If $n>1$ and $n \in \mathcal{K}$ with the form (1.4), then $3 \mid n$.
Theorem 1.2. If $n>1, n \neq 1782=2 \cdot 3^{4} \cdot 11$ and $n \in \mathcal{K}$ with the form (1.4), then n is divisible by the fourth powers of at least two odd primes.

Theorem 1.3. If $n>1, n \neq 1782=2 \cdot 3^{4} \cdot 11$ and $n \in \mathcal{K}$ with the form (1.4), then, $p \geq 1571$ and at most two of p_{1}, \ldots, p_{s} are larger than p. Moreover, if $p \leq 10 p_{i}^{2}$, then $\alpha_{i}=2$.

Remark 1. From the proof, it is easy to see that 1571 and 10 in Theorem 1.3 can be improved. We do not pursue these bounds.

https://daneshyari.com/en/article/4593616

Download Persian Version:

https://daneshyari.com/article/4593616

Daneshyari.com

[^0]: This work was supported by the National Natural Science Foundation of China, Grant No. 11371195 and PAPD.

 * Corresponding author.

 E-mail address: ygchen@njnu.edu.cn (Y.-G. Chen).

