

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Images of 2-adic representations associated to hyperelliptic Jacobians

Jeffrey Yelton

The Pennsylvania State University, Mathematics Department, University Park, State College, PA 16802, United States

ARTICLE INFO

Article history: Received 24 November 2013 Received in revised form 10 October 2014 Accepted 10 October 2014 Available online 9 January 2015 Communicated by Kenneth A. Ribet

Keywords: Galois group Elliptic curve Hyperelliptic curve Jacobian variety Tate module

ABSTRACT

Text. Let k be a subfield of \mathbb{C} which contains all 2-power roots of unity, and let $K = k(\alpha_1, \alpha_2, \ldots, \alpha_{2g+1})$, where the α_i 's are independent and transcendental over k, and g is a positive integer. We investigate the image of the 2-adic Galois action associated to the Jacobian J of the hyperelliptic curve over K given by $y^2 = \prod_{i=1}^{2g+1} (x - \alpha_i)$. Our main result states that the image of Galois in $\operatorname{Sp}(T_2(J))$ coincides with the principal congruence subgroup $\Gamma(2) \triangleleft \operatorname{Sp}(T_2(J))$. As an application, we find generators for the algebraic extension K(J[4])/K generated by coordinates of the 4-torsion points of J.

Video. For a video summary of this paper, please visit http://youtu.be/VXEGYxA6N8w.

@ 2015 Elsevier Inc. All rights reserved.

1. Introduction

Fix a positive integer g. An affine model for a hyperelliptic curve over \mathbb{C} of genus g may be given by

$$y^{2} = \prod_{i=1}^{2g+1} (x - \alpha_{i}), \tag{1}$$

E-mail address: yelton@math.psu.edu.

 $[\]label{eq:http://dx.doi.org/10.1016/j.jnt.2014.10.020} 0022-314 X/ © 2015 Elsevier Inc. All rights reserved.$

with α_i 's distinct complex numbers. Now let $\alpha_1, \ldots, \alpha_{2g+1}$ be transcendental and independent over \mathbb{C} , and let L be the subfield of $\mathbb{C}(\alpha) := \mathbb{C}(\alpha_1, \ldots, \alpha_{2g+1})$ generated over \mathbb{C} by the elementary symmetric functions of the α_i 's. For any positive integer N, let J[N] denote the N-torsion subgroup of $J(\overline{L})$. For each $n \ge 0$, let $L_n = L(J[2^n])$ denote the extension of L over which the 2^n -torsion of J is defined. Set

$$L_{\infty} := \bigcup_{n=1}^{\infty} L_n$$

Note that $\mathbb{C}(\alpha_1, \ldots, \alpha_{2g+1})$ is Galois over L with Galois group isomorphic to S_{2g+1} . It is well known [5, Corollary 2.11] that $\mathbb{C}(\alpha_1, \ldots, \alpha_{2g+1}) = L_1$, so $\operatorname{Gal}(L_1/L) \cong S_{2g+1}$. Fix an algebraic closure \overline{L} of L, and write G_L for the absolute Galois group $\operatorname{Gal}(\overline{L}/L)$.

Let C be the curve defined over L by Eq. (1), and let J/L be its Jacobian. For any prime ℓ , let

$$T_{\ell}(J) := \lim_{\leftarrow n} J[\ell^n]$$

denote the ℓ -adic Tate module of J; it is a free \mathbb{Z}_{ℓ} -module of rank 2g (see [6, §18]). For the rest of this paper, we write $\rho_{\ell} : G_L \to \operatorname{Aut}(T_{\ell}(J))$ for the continuous homomorphism induced by the natural Galois action on $T_{\ell}(J)$. Write $\operatorname{SL}(T_{\ell}(J))$ (resp. $\operatorname{Sp}(T_{\ell}(J))$) for the subgroup of automorphisms of the 2-adic Tate module $T_{\ell}(J)$ with determinant 1 (resp. automorphisms of $T_{\ell}(J)$ which preserve the Weil pairing). Since L contains all 2-power roots of unity, the Weil pairing on $T_2(J)$ is Galois invariant, and it follows that the image of ρ_2 is contained in $\operatorname{Sp}(T_2(J))$. For each $n \geq 0$, we denote by

$$\Gamma(2^n) := \left\{ g \in \operatorname{Sp}(T_2(J)) \mid g \equiv 1 \pmod{2^n} \right\} \triangleleft \operatorname{Sp}(T_2(J))$$

the level- 2^n principal congruence subgroup of $Sp(T_2(J))$.

Our main theorem is the following.

Theorem 1.1. With the above notation, the image under ρ_2 of the Galois subgroup fixing L_1 is $\Gamma(2) \triangleleft \operatorname{Sp}(T_2(J))$.

Before setting out to prove this theorem, we state some easy corollaries.

Corollary 1.2. Let G denote the image under ρ_2 of all of G_L . Then we have the following:

- a) G contains $\Gamma(2) \triangleleft \operatorname{Sp}(T_2(J))$, and $G/\Gamma(2) \cong S_{2g+1}$.
- b) In the case that g = 1, $G = \operatorname{Sp}(T_2(J)) = \operatorname{SL}(T_2(J))$.
- c) For each $n \ge 1$, the homomorphism ρ_2 induces an isomorphism

$$\bar{\rho}_2^{(n)} : \operatorname{Gal}(L_n/L_1) \xrightarrow{\sim} \Gamma(2)/\Gamma(2^n)$$

via the restriction map $\operatorname{Gal}(\overline{L}/L_1) \twoheadrightarrow \operatorname{Gal}(L_n/L_1)$.

Download English Version:

https://daneshyari.com/en/article/4593624

Download Persian Version:

https://daneshyari.com/article/4593624

Daneshyari.com