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Let E : y2 = x3+Ax2+Bx +C be a nonconstant elliptic curve 
over Q(t) with at least one nontrivial Q(t)-rational 2-torsion 
point. We describe a method for finding t0 ∈ Q for which 
the corresponding specialization homomorphism t �→ t0 ∈ Q

is injective. The method can be directly extended to elliptic 
curves over K(t) for a number field K of class number 1, 
and in principal for arbitrary number field K. One can use 
this method to calculate the rank of elliptic curves over Q(t)
of the form as above, and to prove that given points are free 
generators. In this paper we illustrate it on some elliptic curves 
over Q(t) from an article by Mestre.
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1. Introduction

Let

E = E(t) : y2 = x3 + Ax2 + Bx + C (1.1)

be a nonconstant (non-isotrivial) elliptic curve over Q(t), i.e., E is not isomorphic 
over Q(t) to an elliptic curve over Q. For the sake of simplicity we will assume that 
A, B, C ∈ Z[t]. It is known that the set E(Q(t)) of Q(t)-rational points of E is finitely 
generated. Let D denote the discriminant of the polynomial f(x) := x3 +Ax2 +Bx +C. 
We note that D ∈ Z[t]. Let t0 ∈ Q be such that D(t0) �= 0. Then by specializing t to t0
the specialization E(t0) of E(t) is an elliptic curve over Q and we have a specialization 
homomorphism σ = σt0 : E(Q(t)) → E(t0)(Q) (note that it is well defined). For more on 
this topic see [Sil4, Appendix C §20]. The specialization homomorphism can be defined 
for general non-split elliptic surfaces and in a more general situation. In 1952 A. Néron 
[Né] showed that the specialization fails to be injective for t0 ∈ Q on a small subset (of 
density 0) (see [Se, Section 11.1]). J.H. Silverman [Sil1,Sil2] in 1983 using heights and 
J. Top in 1985 in his master’s thesis (see [To]) by extending Néron’s techniques proved 
the so called Silverman specialization theorem, which says that the specialization homo-
morphism is in fact injective for all but finitely many rational t0. As far as we know, 
there is no practical algorithm for determining such a t0 (for general non-split elliptic 
surfaces). As we learned from J.H. Silverman, all constants in [Sil2], Section 4, Theo-
rem B, and Section 5, Theorem C can, in principal, be effectively computed. Therefore, 
one can find a computable constant C, such that for all algebraic t0 with height greater 
than C, the specialization homomorphism at t0 is injective. However, the constants are 
too large to be practical. Similarly for methods from [Sil3]. In this paper we use the 
ideas from Néron and Top (which also appear in [Ha]). We obtain a method for finding 
a specialization t �→ t0 ∈ Q such that the specialization homomorphism is injective, in 
the case of elliptic curves of shape (1.1) having at least one non-trivial Q(t)-rational 
2-torsion point. This improves and extends the method from [GT1]. Let us state the 
main results (see Section 2 and Section 3 for the proofs):

Theorem 1.1. Let E be a nonconstant elliptic curve over Q(t), given by the equation

E = E(t) : y2 = (x− e1)(x− e2)(x− e3),
(
e1, e2, e3 ∈ Z[t]

)
.

Assume that t0 ∈ Q satisfies the following condition.

(A) For every nonconstant square-free divisor h in Z[t] of

(e1 − e2) · (e1 − e3) or (e2 − e1) · (e2 − e3) or (e3 − e1) · (e3 − e2),

the rational number h(t0) is not a square in Q.

Then the specialization homomorphism σ : E(Q(t)) → E(t0)(Q) is injective.
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