ELSEVIER

Exponential sums over primes in short intervals

Bingrong Huang*, Zhiwei Wang
School of Mathematics, Shandong University, Jinan, Shandong 250100, China

A R T I C L E I N F O

Article history:

Received 1 August 2014
Accepted 5 September 2014
Available online 28 October 2014
Communicated by David Goss

Keywords:

Exponential sums
von Mangoldt function
Short intervals

A B S T R A C T

Let $\Lambda(n)$ be the von Mangoldt function, x real and $2 \leq y \leq x$. This paper improves the estimate on the exponential sum over primes in short intervals

$$
S_{k}(x, y ; \alpha)=\sum_{x<n \leq x+y} \Lambda(n) e\left(n^{k} \alpha\right)
$$

when $k \geq 4$ for all $\alpha \in[0,1]$. And then combined with the Hardy-Littlewood method, this enables us to give some short interval variants of Hua's theorems in additive prime number theory.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

Let $\Lambda(n)$ be the von Mangoldt function, $k \geq 1$ an integer, x real and $2 \leq y \leq x$. The estimate of the exponential sum over primes in short intervals

$$
\begin{equation*}
S_{k}(x, y ; \alpha)=\sum_{x<n \leq x+y} \Lambda(n) e\left(n^{k} \alpha\right) \tag{1.1}
\end{equation*}
$$

[^0]was first studied by I.M. Vinogradov [11] in 1939 with his elementary method. Since then this topic has attracted the interest of quite a number of authors (see [1,5-10,12], etc.). These sums arise naturally and play important roles when solving the Waring-Goldbach problems in short intervals by the circle method. In particular, the case $k=1$, i.e., the linear exponential sum over primes in short intervals, was studied quite extensively, because of its applications to the study of the Goldbach-Vinogradov theorem with three almost equal prime variables (see [12] and the references therein).

For the case $k=2$, Liu and Zhan [7] first established a non-trivial estimate of $S_{2}(x, y ; \alpha)$ for all α and all published results before their result are valid only for α in a very thin subset of [0, 1]. In [8], Lü and Lao improved the results in [7] to be as good as what was previously derived from the Generalized Riemann Hypothesis.

In this paper we deal with $S_{k}(x, y ; \alpha)$ for all $\alpha \in[0,1]$ in the general case $k \geq 3$. In [6], Liu and Zhan first established a non-trivial estimate of $S_{k}(x, y ; \alpha)$ for all $\alpha \in \mathbb{R}$ and $k \geq 3$. To state Liu and Zhan's result, we introduce some notation. Let $A>0$ be any given large constant, $\varepsilon>0$ sufficiently small. We further put

$$
\begin{equation*}
L=\log x, \quad P=L^{c_{1}}, \quad \mathcal{P}=x^{k \varrho}, \quad Q=\frac{y^{2 k-1}}{x^{k-1}} L^{-c_{3}}, \quad R=y x^{k-1} L^{c_{2}} \tag{1.2}
\end{equation*}
$$

such that

$$
\begin{equation*}
2 \leq 2 P<2 \mathcal{P}<Q \leq R \leq x^{k} \tag{1.3}
\end{equation*}
$$

where ϱ is a positive parameter depending on k which will be specified later and c_{i} denote positive constants that depend at most on the positive numbers A, k and ε. By Dirichlet's lemma on rational approximation, any $\alpha \in[0,1]$ can be written as

$$
\begin{equation*}
\alpha=\frac{a}{q}+\lambda, \quad \text { with } \quad(a, q)=1, \quad 1 \leq a \leq q \leq Q, \quad|\lambda| \leq \frac{1}{q Q} . \tag{1.4}
\end{equation*}
$$

Then every $\alpha \in[0,1]$ given in the form of (1.4) satisfies one of the following three conditions:

$$
\begin{array}{ll}
\text { (a) } q \leq P, & |\lambda| \leq \frac{1}{R} \\
\text { (b) } P<q \leq Q, & |\lambda| \leq \frac{1}{q Q} \\
\text { (c) } q \leq P, & \frac{1}{R}<|\lambda| \leq \frac{1}{q Q} .
\end{array}
$$

Denote by \mathcal{A}, \mathcal{B} and \mathcal{C} the three subsets of α satisfying (a), (b) and (c) respectively. Then $[0,1]$ is the disjoint union of \mathcal{A}, \mathcal{B} and \mathcal{C}. The main result in [6] is the following

https://daneshyari.com/en/article/4593662

Download Persian Version:
https://daneshyari.com/article/4593662

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: bingronghuangsdu@gmail.com (B. Huang), zhiweiwang.sdu@gmail.com (Z. Wang).

