Single-valued multiple polylogarithms and a proof of the zig-zag conjecture

Francis Brown ${ }^{\text {a,* }}$, Oliver Schnetz ${ }^{\text {b }}$
${ }^{\text {a }}$ CNRS-IHES, Bures-sur-Yvette, 91440, France
${ }^{\text {b }}$ Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany

A R T I C L E I N F O

Article history:

Received 16 July 2014
Accepted 30 September 2014
Available online 28 October 2014
Communicated by D. Zagier

Keywords:

Single-valued polylogarithms
Multiple zeta values
Quantum field theory

Abstract

A long-standing conjecture in quantum field theory due to Broadhurst and Kreimer states that the periods of the zig-zag graphs are a certain explicit rational multiple of the odd values of the Riemann zeta function. In this paper we prove this conjecture by constructing a certain family of single-valued multiple polylogarithms which correspond to multiple zeta values $\zeta(2, \ldots, 2,3,2, \ldots 2)$ and using the method of graphical functions. The zig-zag graphs are the only infinite family of primitive graphs in ϕ_{4}^{4} theory (in fact, in any renormalisable quantum field theory in four dimensions) whose periods are now known.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In 1995 Broadhurst and Kreimer [7] conjectured a formula for the Feynman periods of a well-known family of graphs called the zig-zag graphs. We give a proof of this conjecture using the second author's theory of graphical functions [29,27] (see also [17]) and a variant of the first author's theory of single-valued multiple polylogarithms [8].

[^0]The proof makes use of a recent theorem due to Zagier [35,25] on the evaluation of the multiple zeta values $\zeta(2, \ldots, 2,3,2, \ldots, 2)$ in terms of the numbers $\zeta(2 m+1) \pi^{2 k}$.

1.1. A family of single-valued polylogarithms

The classical polylogarithm

$$
\begin{equation*}
\operatorname{Li}_{n}(z)=\sum_{k \geq 1} \frac{z^{k}}{k^{n}} \tag{1.1}
\end{equation*}
$$

is defined for $n \geq 1$ and $|z|<1$. It extends analytically to a multivalued function on $\mathbb{C} \backslash\{0,1\}$ and admits a canonical single-valued version $\mathcal{L}_{n}(z)$ [8], where

$$
\mathcal{L}_{1}(z)=2 \log |1-z| \quad \text { and } \quad \mathcal{L}_{2}(z)=-2 i \operatorname{Im}\left(\operatorname{Li}_{2}(z)\right)+2 \log |z| \log (1-\bar{z})
$$

The second function is a close relative of the Bloch-Wigner dilogarithm (1.6). Various different single-valued versions of (1.1) were first constructed in [32,34] and arose in physics in [16]. An important conjecture in arithmetic algebraic geometry due to Za gier [18] states that the regulator on the algebraic K-theory of number fields can be expressed in terms of the single-valued classical polylogarithms. As a result, the mixed Hodge theory of the classical polylogarithms (1.1) has generated an extensive literature, culminating in a motivic interpretation of Zagier's conjecture due to Beilinson and Deligne [2]. The expected interpretation as a regulator requires that the values at $z=1$ of the functions (1.1) (single Riemann zeta values) correspond to primitive elements in the Lie coalgebra of motivic multiple zeta values, which is indeed the case.

In [8], one of us showed that all multiple polylogarithms in one variable (or equivalently, iterated integrals on the projective line minus 3 points $\mathbb{P}^{1} \backslash\{0,1, \infty\}$) admit canonical single-valued versions by combining their real and imaginary parts. These functions are denoted by $\mathcal{L}_{w}(z)$, where w is any word in the alphabet in two letters $\left\{\mathrm{x}_{0}, \mathrm{x}_{1}\right\}$. The case of the classical polylogarithms (1.1) corresponds to the family of words $w=\mathrm{x}_{1} \mathrm{x}_{0} \ldots \mathrm{x}_{0}$. The functions $\mathcal{L}_{w}(z)$ are uniquely determined by demanding that they be single-valued real-analytic solutions to the Knizhnik-Zamolodchikov equation (in $\frac{\partial}{\partial z}$) with prescribed limiting behaviour at $z=0$ [8]. It follows from this fact that any differential equation on $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ with regular singularities and global unipotent monodromy has a single-valued solution in a certain ring generated by the functions $\mathcal{L}_{w}(z)$. The latter property can be used for evaluating a large class of Feynman integrals [29]. Unfortunately, the general definition of $\mathcal{L}_{w}(z)$ does not have a closed formula, and, in order to write down families of single-valued polylogarithms one needs a precise knowledge of certain coefficients in the Drinfeld associator.

The majority of this paper is devoted to giving an explicit construction (Section 2) of a somewhat different family of single-valued functions generalising the Bloch-Wigner dilogarithm. The new functions are single-valued solutions to a certain differential equation in both $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$, and their values at 1 are related to the Hoffman multiple zeta

https://daneshyari.com/en/article/4593677

Download Persian Version:
https://daneshyari.com/article/4593677

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: brown@ihes.fr (F. Brown), schnetz@mi.uni-erlangen.de (O. Schnetz).

