A new generalization of Fermat's Last Theorem ${ }^{\text {AT }}$
 CrossMark

Tianxin Cai ${ }^{*}$, Deyi Chen, Yong Zhang
Department of Mathematics, Zhejiang University, Hangzhou, 310027, China

A R T I C L E I N F O

Article history:

Received 30 June 2014
Received in revised form 12
September 2014
Accepted 13 September 2014
Available online 6 November 2014
Communicated by David Goss

MSC:

primary 11D41
secondary 11D72
Keywords:
Fermat's Last Theorem
Additive and multiplicative functions Quadratic fields
Elliptic curves

A B S T R A C T

In this paper, we consider some hybrid Diophantine equations of addition and multiplication. We first improve a result on new Hilbert-Waring problem. Then we consider the equation

$$
\left\{\begin{array}{l}
A+B=C \tag{1}\\
A B C=D^{n}
\end{array}\right.
$$

where $A, B, C, D, n \in \mathbb{Z}_{+}$and $n \geq 3$, which may be regarded as a generalization of Fermat's equation $x^{n}+y^{n}=z^{n}$. When $\operatorname{gcd}(A, B, C)=1$, (1) is equivalent to Fermat's equation, which means it has no positive integer solutions. We discuss several cases for $\operatorname{gcd}(A, B, C)=p^{k}$ where p is an odd prime. In particular, for $k=1$ we prove that (1) has no nonzero integer solutions when $n=3$ and we conjecture that it is also true for any prime $n>3$. Finally, we consider Eq. (1) in quadratic fields $\mathbb{Q}(\sqrt{t})$ for $n=3$.
© 2014 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

In this paper, we consider some hybrid Diophantine equations of addition and multiplication. First of all,

$$
n=x_{1}+x_{2}+\cdots+x_{s}
$$

such that

$$
x_{1} x_{2} \cdots x_{s}=x^{k}
$$

for $n, x_{i}, x, k \in \mathbb{Z}_{+}$, which is a new variant of Waring's problem:

$$
n=x_{1}^{k}+x_{2}^{k}+\cdots+x_{s}^{k}
$$

We denote by $g^{\prime}(k)$ (resp. $\left.G^{\prime}(k)\right)$ the least positive integer such that every integer (resp. all sufficiently large integer) can be represented as a sum of at most $g^{\prime}(k)$ (resp. $\left.G^{\prime}(k)\right)$ positive integers, and the product of the $g^{\prime}(k)\left(\right.$ resp. $\left.G^{\prime}(k)\right)$ integers is a k-th power. We show [2] that

$$
\begin{aligned}
g^{\prime}(k)=2 k-1 ; & G^{\prime}(p) \leq p+1 \\
G^{\prime}(2 p) \leq 2 p+2 \quad(p \geq 3) ; & G^{\prime}(4 p) \leq 4 p+2 \quad(p \geq 7)
\end{aligned}
$$

where k is a positive integer and p is prime. In this paper, we improve the results on composite numbers as follows.

Theorem 1. For any composite number $k, G^{\prime}(k) \leq k+2$.
Next, we consider Fermat's Last Theorem. In 1637, Fermat claimed that the Diophantine equation

$$
x^{n}+y^{n}=z^{n}
$$

has no positive integer solutions for any integer $n \geq 3$. This was proved finally by Andrew Wiles in 1995 [11,14].

There are several generalizations of Fermat's Last Theorem, e.g., Fermat-Catalan conjecture, which states that the equation $a^{m}+b^{n}=c^{k}$ has only finitely many solutions (a, b, c, m, n, k), where a, b, c are positive coprime integers and m, n, k are positive integers, satisfying $\frac{1}{m}+\frac{1}{n}+\frac{1}{k}<1$. So far there are only 10 solutions found [4,10]. Meanwhile, Beal's conjecture [8] states that the equation $A^{x}+B^{y}=C^{z}$ has no solution in positive integers A, B, C, x, y and z with x, y and z at least 3 and A, B and C coprime. Beal has offered a prize of one million dollars for a proof of his conjecture or a counterexample [12]. Obviously, there are only finite solutions for Beal's equation under Fermat-Catalan conjecture. Meanwhile, it's known that both FLT and Fermat-Catalan conjecture are the

https://daneshyari.com/en/article/4593685

Download Persian Version:

https://daneshyari.com/article/4593685

Daneshyari.com

[^0]: Project supported by the National Natural Science Foundation of China 11351002.

 * Corresponding author.

 E-mail addresses: txcai@zju.edu.cn (T. Cai), chendeyi1986@126.com (D. Chen), zhangyongzju@163.com (Y. Zhang).

