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give a new expression for the generating function of the num-
ber of divisors. As corollaries, we obtained new connections
between partitions and divisors.
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1. Introduction

Any series of the form
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where the a, (n = 1,2,...) are real numbers is called a Lambert series. These series
are well known class of series in analytic function theory and number theory and are
mentioned in the classical texts by Abramowitz and Stegun [1, pp. 826-827], Bromwich
[7, pp. 102-103], Chrystal [8, pp. 345-346], Hardy and Wright [13, pp. 257-258], Knopp
[18, pp. 448-452], MacMahon [24, pp. 26-32], Pdlya and Szegd [28, pp. 125-129], and
Titchmarsh [30, pp. 160-161]. Lambert series have been elegantly used in a variety of
contexts of Ramanujan’s research works. The dimension provided by Ramanujan inspired
Andrews and Berndt [5] to prove a lot of identities given by Ramanujan.

Lambert series are natural generalizations of the following formula related to the
theory of numbers:
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In multiplicative number theory, the divisor function 7(n) is defined as the number of
divisors of n, unity and n itself included, i.e.,

7(n) = Z 1.
d|n
We use the convention that 7(n) =0 for n < 0.

Due to Clausen’s [9], we have the following identity:
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In this paper, motivated by these results, we shall prove:

Theorem 1. For |q| < 1,
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where
(@:¢)n = (1 —a)(1 —aq)(1 —ag®) -~ (1 —ag"™")
is the g-shifted factorial, with (a;q)o = 1.

Some consequences of this result can be easily derived.
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