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In this paper, we present new asymptotic expansions of the 
gamma function. Based on our expansions, we establish some 
symmetric double inequalities for the gamma function.
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1. Introduction

Stirling’s formula

n! ∼
√

2πn
(
n

e

)n

, n ∈ N := {1, 2, . . .} (1.1)
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has many applications in statistical physics, probability theory and number theory. Ac-
tually, it was first discovered in 1733 by the French mathematician Abraham de Moivre 
(1667–1754) in the form

n! ∼ constant ·
√
n(n/e)n

when he was studying the Gaussian distribution and the central limit theorem. Af-
terwards, the Scottish mathematician James Stirling (1692–1770) found the missing 
constant 

√
2π when he was trying to give the normal approximation of the binomial 

distribution.
Stirling’s formula has attracted much interest of many mathematicians and has moti-

vated a large number of research papers concerning various generalizations and improve-
ments (see [3–12,14–19,21–37,39,38,40,41,43]). See also an overview at [20].

A slightly more accurate approximation than Stirling’s formula is the Burnside for-
mula [10]:

n! ∼
√

2π
(
n + 1

2
e

)n+ 1
2

. (1.2)

Recently, Mortici [22] published the following simple approximations for n!:
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2

(1.3)

and

n! ∼
√

2πe · e−ω

(
n + ω

e

)n+ 1
2

, (1.4)

where ω = (3 −
√

3 )/6. We find that the formulas (1.1) to (1.4) can be written as
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, (1.5)
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and
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√
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, (1.8)

respectively. Obviously, the formula (1.8) is better than the formulas (1.5) to (1.7).
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