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1. Introduction

Euler constant vy was first introduced by Leonhard Euler (1707-1783) in 1734 as the
limit of the sequence
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v(n) := Z % —Inn. (1.1)

m=1

It is also known as the Euler—Mascheroni constant. There are many famous unsolved
problems about the nature of this constant. For example, it is a long-standing open
problem if it is a rational number. See e.g. the survey papers or books of Brent and
Zimmermann [3], Dence and Dence [13], Havil [20] and Lagarias [21]. A good part of its
mystery comes from the fact that the known algorithms converging to « are not very
fast, at least, when they are compared to similar algorithms for 7 and e.

The sequence (y(n))nen converges very slowly toward 7, like n=1. To evaluate it
more accurately, we need to accelerate the convergence. This can be done using the
Euler-Maclaurin summation formula, Stieltjes approach, exponential integral methods,
Bessel function method, etc. See e.g. Gourdon and Sebah [17].

Up to now, many authors are preoccupied to improve its rate of convergence. See e.g.
Chen and Mortici [10], DeTemple [14], Gavrea and Ivan [16], Lu [23,24], Mortici [25],
Mortici and Chen [32], Yang [41] and references therein. We list some main results as
follows: as n — oo,

zn: % —In (n + %) =v+0(n"?) (DeTemple [14], 1993), (1.2)
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Z % —Inp(n) =7+ 0(n"®) (Chen and Mortici [10], 2012), (1.4)

m=1

where p(n) = 1+ 5~ + 552 — 555 + s7a0-1- Recently, Mortici and Chen [32] provided
a very interesting sequence
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and proved

lim n'?(v(n) —v) = 796801 (1.5)

n—00 43783740

Hence, the rate of convergence of the sequence (v(n)),en is n =12
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