
Journal of Number Theory 145 (2014) 109–125

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

A Waring–Goldbach type problem for mixed 

powers

Quanwu Mu 1

Department of Mathematics, Tongji University, Shanghai, 200092, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 October 2013
Accepted 7 May 2014
Available online 7 July 2014
Communicated by Robert C. 
Vaughan

MSC:
11P32
11N36

Keywords:
Waring–Goldbach problem
Hardy–Littlewood method
Sieve theory
Almost-prime

Let Pr denote an almost-prime with at most r prime factors, 
counted according to multiplicity. In this paper, it is proved 
that for each integer k with 4 ≤ k ≤ 5, and for every 
sufficiently large even integer N satisfying the congruence 
condition N �≡ 2 ( mod 3) for k = 4, the equation

N = x2 + p2
1 + p3

2 + p4
3 + p4

4 + pk5

is solvable with x being an almost-prime Pr and the other 
variables primes, where r = 6 for k = 4, and r = 9 for 
k = 5. This result constitutes an improvement upon that of 
R.C. Vaughan.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let N , k1, k2, · · · , ks be natural numbers such that 2 ≤ k1 ≤ k2 ≤ · · · ≤ ks, N > s. 
Waring problem of mixed powers concerns the representation of N as the form

N = xk1
1 + xk2

2 + · · · + xks
s . (1.1)
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Not very much is known about results of this kind. For historical references the reader 
should consult section P12 of LeVeque’s Reviews in number theory and the bibliography 
in [12].

The circle method of Hardy and Littlewood provides a technique for problems of this 
sort, but one has to overcome various difficulties not experienced in the pure Waring 
problem (1.1) with k1 = k2 = · · · = ks. In particular, the choice of the relevant parame-
ters in the definition of major and minor arcs tends to become complicated if a deeper 
representation problem (1.1) is under consideration.

In 1969, R.C. Vaughan [10] obtained the asymptotic formula for the number of repre-
sentations of a number as the sum of two squares, one cube and three fourth powers [11]. 
In view of R.C. Vaughan’s result, it is reasonable to conjecture that for every sufficiently 
large even integer N satisfying the congruence condition N �≡ 2 (mod 3) the equation

N = p2
1 + p2

2 + p3
3 + p4

4 + p4
5 + p4

6 (1.2)

is solvable, where and below the letter p, with or without subscript, always stands for 
a prime number. The congruence condition N �≡ 2 (mod 3) is necessary, because of 
p2 ≡ p4 ≡ 1 (mod 3) and p3 ≡ 1 or 2 (mod 3) for p > 3. This conjecture is perhaps out 
of reach at present. It is possible, however, to replace a variable by an almost-prime. Our 
results are as follows, where an integer with at most r prime factors, counted according 
to multiplicity, is called an almost-prime Pr, as usual. The proof of our results employs 
the Hardy–Littlewood method and H. Iwaniec’s linear sieve method.

Theorem 1. For all sufficiently large even integer N with N �≡ 2 (mod 3), let R4(N)
denote the number of solutions of the equation

N = x2 + p2
2 + p3

3 + p4
4 + p4

5 + p4
6 (1.3)

with x being an almost-prime P6 and the pj’s primes. Then we have

R4(N) � N
13
12

log6 N
.

Theorem 2. For all sufficiently large even integer N , let R5(N) denote the number of 
solutions of the equation

N = x2 + p2
2 + p3

3 + p4
4 + p4

5 + p5
6 (1.4)

with x being an almost-prime P9 and the pj’s primes. Then we have

R5(N) � N
31
30

log6 N
.

We only provide the proof of Theorem 1 in detail, the proof of Theorem 2 follows in 
a similar manner.
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