

Contents lists available at ScienceDirect

Journal of Number Theory

On finite layers of \mathbb{Z}_l -extensions and K_2

Soogil Seo ¹

Department of Mathematics, Yonsei University, 134 Sinchon-Dong, Seodaemun-Gu, Seoul 120-749, South Korea

ARTICLE INFO

Article history:
Received 13 March 2014
Received in revised form 20 May 2014
Accepted 23 May 2014
Available online 2 July 2014
Communicated by D. Burns

MSC:

11R18

11R20 11R23

11R2311R27

Keywords:

 Z_l -extension Norm compatible sequence

Universal norm

Milnor's K-group

Iwasawa theory

ABSTRACT

Let F denote a number field. We study a relation between the subgroup of elements whose lth roots generate extensions of F which are contained in a \mathbb{Z}_l -extension of F and a certain kernel of Milnor's K-group defined by Tate. We prove that both groups can be described in terms of a norm compatible sequence over the cyclotomic \mathbb{Z}_l -extension of F.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let F be a number field and l an odd prime. An extension field K of F will be called a \mathbb{Z}_l -extension if K/F is a Galois extension and the Galois group is isomorphic to the

E-mail address: sgseo@yonsei.ac.kr.

¹ This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2014001824).

additive group of \mathbb{Z}_l , the ring of l-adic integers of the field \mathbb{Q}_l of l-adic numbers. We determine such extension fields of F in terms of a norm compatible property over the cyclotomic \mathbb{Z}_l -extension of F. This shows that an information on an arithmetic property of the cyclotomic \mathbb{Z}_l -extension of F determines all \mathbb{Z}_l -extensions of F.

Bertrandias and Payan proved in their paper [3] a theorem which determines the first layers of $\mathbb{Z}/l^n\mathbb{Z}$ -extensions of a number field in terms of a certain norm group over the cyclotomic $\mathbb{Z}/l^n\mathbb{Z}$ -extension of the ground field. The main theorem in this paper is a natural generalization of this.

More precisely, the first layers of the inverse limit over the cyclotomic $\mathbb{Z}/l^n\mathbb{Z}$ -extension play a role to find the first layers of \mathbb{Z}_l -extensions in the same way that the norm groups are used in [3] to find the first layers of $\mathbb{Z}/l^n\mathbb{Z}$ -extensions.

For a positive integer s>0, let ζ_s denote a primitive sth root of unity in a fixed algebraic closure \overline{F} of F such that $\zeta_s^l=\zeta_{sl^{-1}}$ for any l|s. Let $m\geq 0$ denote the maximum number with $\zeta_{l^m}\in F$. Let \tilde{F}_{∞} denote the composite of all \mathbb{Z}_l -extensions of F inside \overline{F} . Let w be a fixed integer with $0< w\leq m$ when m>0 and w=1 for m=0. Let Θ_F^w denote the set of all elements α in F^{\times} such that the field generated by l^w th roots of α is contained in a \mathbb{Z}_l -extension of F,

$$\Theta_F^w = \{ \alpha \in F^\times \mid F(\alpha^{1/l^w}) \subset \tilde{F}_\infty \}.$$

For a notational convenience, we write $\Theta_F = \Theta_F^1$.

Let $\mathbb{Q}(\mu_{l^{\infty}}) = \bigcup_{n \geq m} \mathbb{Q}(\mu_{l^n})$ and let \mathbb{Q}_{∞} denote the unique \mathbb{Z}_l extension of \mathbb{Q} which is the fixed field of the torsion subgroup of the Galois group $G(\mathbb{Q}(\mu_{l^{\infty}})/\mathbb{Q})$ in $\mathbb{Q}(\mu_{l^{\infty}})$. We denote by $F_{\infty}^{\text{cyc}} = F\mathbb{Q}_{\infty}$ the cyclotomic \mathbb{Z}_l -extension of F in \overline{F} and F_n its unique subfield of degree l^{n-m} over F for $n \geq m$ and $F_n = F$ for n < m. We let

$$\varprojlim_{n > m} F_n^\times / T F_n^{\times l^{n-m}} \cdot F_n^{\times l^n} \cdot F^{\times l^m} \quad \text{and} \quad \varprojlim_{n > m} F_n^\times / T F_n^{\times l^{m-1}} \cdot \left(T - l^m\right) F_n^\times$$

denote the inverse limit of $F_n^{\times}/TF_n^{\times l^{n-m}} \cdot F_n^{\times l^n} \cdot F^{\times l^m}$ and $F_n^{\times}/TF_n^{\times l^{m-1}} \cdot (T-l^m)F_n^{\times l^m}$ respectively over $n \geq m$ with respect to the field theoretic norm maps. Let $\pi_{w,1}$ and $\pi_{w,2}$ denote the natural projections

$$\pi_{w,1}: \varprojlim_{n \geq m} F_n^{\times}/TF_n^{\times l^{n-m}} \cdot F_n^{\times l^n} \cdot F^{\times l^m} \longrightarrow F^{\times}/F^{\times l^w}$$

$$\pi_{w,2}: \varprojlim_{n > m} F_n^{\times}/(T - l^m)F_n^{\times} \cdot F^{\times l^{m-1}} \longrightarrow F^{\times}/F^{\times l^w}$$

defined as $\pi_{w,1}(a_n \mod TF_n^{\times l^{n-m}} \cdot F_n^{\times l^n} \cdot F^{\times l^m}) = N_{m+1}(a_{m+1}) \mod F^{\times l^w}$ and

$$\pi_{w,2}(a_n \mod F_n^{\times}/(T-l^m)F_n^{\times} \cdot F^{\times l^{m-1}}) = N_{m+1}(a_{m+1}) \mod F^{\times l^w}$$

where N_n denotes the field theoretic norm map from F_n to F.

Download English Version:

https://daneshyari.com/en/article/4593736

Download Persian Version:

https://daneshyari.com/article/4593736

<u>Daneshyari.com</u>