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Given a quartic field with S4 Galois group, we relate its 
ramification to that of the non-Galois sextic subfields of its 
Galois closure, and we construct explicit generators of these 
sextic fields from that of the quartic field, and vice versa. 
This allows us to recover examples of S4-sextic fields of Cohen 
and of Tate unramified outside 229, and to easily determine 
the tame part of the conductor of an octahedral Artin 
representation. We study class number divisibility arising
from S4-quartics whose discriminants are odd and square-
free, we explicitly construct infinitely many S4-quartics whose 
discriminants are −1 times a square, and experimental data 
suggest two surprising conjectures about S4-quartic fields 
over Q unramified outside one finite prime.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Cohen [3, §6.3.7] notes that the sextic polynomials

f1(x) = x6 − 4x2 − 1, poly disc 262292, field disc 2292

f2(x) = x6 − 3x5 + 6x4 − 7x3 + 2x2 + x− 4, poly disc 2293, field disc 2293
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are irreducible over Q and have Galois group S4, the symmetric group on four letters. The 
discriminant of f1 is a square and that of f2 is not, so S6 has two1 transitive subgroups iso-
morphic to S4, one of which is contained in A6 and the other one is not. Note that f1(x) =
−λ(−x2) where λ = x3 − 4x + 1, and that 64f2(x+1

2 ) = x6 + 9x4 − 37x2 − 229 is λ(x2)
for a cubic λ over Q with −64λ(−x−3

4 ) = λ(x), so the sextic fields defined by f1 and f2
contain the same (isomorphism class of) cubic field of discriminant 229 defined by λ.

Sextic fields unramified outside 229 also appear in classical examples of Artin repre-
sentations. Let γ be a root of λ. Tate [15, p. 251] shows that the minimal polynomials

g1 := minQ(
√

−3 + 8γ ) = x6 + 9x4 − 229x2 − 229, field disc 2293,

h1 := minQ
(√

4 − 3γ2
)

= x6 + 12x4 − 229, field disc 2293,

are irreducible over Q, have S4 Galois groups, and the projective Artin representations 
defined by their splitting fields lift to ordinary odd, 2-dimensional Artin representations 
ρ1, ρ2 of level 229 such that ρ1 is not isomorphic to ρ2 or its dual. Using the computer 
algebra system PARI-GP we check that f1, f2, g1, h1 define pairwise non-isomorphic fields 
unramified outside 229. The starting point of this paper is to find all such sextic fields, 
and to understand these examples by putting them in a wider context. We will relate 
the discriminant of an S4-quartic field K4 to that of the non-Galois sextic subfields of its 
Galois closure, and we will study S4-quartic fields whose discriminants are square-free, 
−1 times a perfect square, and prime-powers, respectively.

We begin with a general setup. Let k be a field of characteristic �= 2, and let K24/k

be a degree 24 Galois extension with Gal(K24/k) � S4. There is one conjugacy class of 
subgroups in S4 isomorphic to each of Z/4, D3 (the dihedral group of order 6) and D4, 
respectively. It also has one conjugacy class of non-normal subgroups isomorphic to Z/2 ×
Z/2 (generated by any pair of disjoint 2-cycles). Fix a subgroup from each one of these 
conjugacy classes, and consider the fixed field by each of these representative subgroups:

K3: fixed field by D4;
K4: fixed field by D3;
K6: fixed field by Z/4;
K ′

6: fixed field by a non-normal Z/2 × Z/2.

The D4 subgroups of S4 are the Sylow 2-subgroups, so they contain conjugates of Z/4
and (normal and non-normal) Z/2 × Z/2. This can also be seen from the following 
explicit model of a D4 subgroup in S4 which we will make use of later on:

{
(1234), (1432), (13)(24), (), (13), (24), (12)(34), (14)(23)

}
. (1)

1 There are exactly four conjugacy classes of S4 subgroups in S6: Two of them are transitive and two are 
not, and in each case exactly one of the two S4 is contained in A6 (cf. [19]). We will not make use of these 
remarks in the rest of the paper.
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