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1. Introduction

It is known that the Riemann zeta function ((s) takes irrational values at positive even
integers. This follows from Euler’s evaluation ((s)/7° € Q for s = 2,4, 6, ... and from the
transcendence of 7. Less is known about the values of ((s) at odd integers s > 1. Apéry
was the first to establish the irrationality of such a zeta value ((s): he proved [Apé79]
in 1978 that ¢(3) is irrational. The next major step in the direction was made by Ball and
Rivoal [BRO1] in 2000: they showed that there are infinitely many odd integers at which
Riemann zeta function is irrational. Shortly after, Rivoal demonstrated [Riv02] that one
of the nine numbers ((5),{(7),...,{(21) is irrational, while the second author [Zud01]
reduced the nine to four: he proved that at least one of the four numbers {(5), ¢(7), ((9)
and ((11) is irrational.

Already in 1978, Apéry constructs linear forms in 1 and {(2), as well as in 1 and {(3),
with integer coefficients that produce the irrationality of the two zeta values in a quanti-
tative form: the constructions imply upper bounds p(¢(2)) < 11.850878 ... and u(¢(3)) <
13.41782. .. for the irrationality measures. Recall that the irrationality exponent p(c)
of a real irrational « is the supremum of the set of exponents p for which the inequality
| — p/q| < ¢~* has infinitely many solutions in rationals p/q. Hata improves the above
mentioned results to p(¢(2)) < 5.687 in [Hat95, Addendum]| and to p(¢(3)) < 7.377956. ..
in [Hat00]. Further, Rhin and Viola study a permutation group related to ¢(2) in [RV96]
and show that ©(¢(2)) < 5.441243. They later apply their new permutation group arith-
metic method to ((3) as well, to prove the upper bound p(¢(3)) < 5.513891. In an
attempt to unify the achievements of Ball-Rivoal and of Rhin—Viola, the second author
re-interpreted the constructions using the classical theory of hypergeometric functions
and integrals [Zud04]. In his recent work [Zud14], he uses the permutation group arith-
metic method and a hypergeometric construction, closely related to the one in this paper,
to sharpen the earlier irrationality exponent of {(2) to ©({(2)) < 5.09541178.. ..

In this paper, we construct simultaneous rational approximations to both ¢(2) and {(3)
using hypergeometric tools, and establish from them a lower bound for Q-linear combi-
nations of 1, ¢(2) and ¢(3) under some strong divisibility conditions on the coefficients.
Namely, we prove

Theorem 1. Let i and € be positive real numbers. For m sufficiently large with respect to
e and n, let (ag,a1,az) € Q3 \ {0} be such that

(i) D?Wngao € Z, Dypay € Z and %2: as € 7, where D, denotes the least common
multiple of 1,2,...,m; and
(ii) |aol, |a1l, laz| < e~ (0™ hold with 1o = 0.899668635. . . .

Then |ag + a1¢(2) + aol(3)| > e~ (otM™ with sq = 6.770732145.. . . .

Theorem 1 contains the irrationality of both ¢(2) and {(3), because 79 < 1. Namely,
taking
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